期刊文献+

基于人工免疫算法的精铜板带加工配料优化

Charging optimization for refined copper strip producing by artificial immune algorithm
原文传递
导出
摘要 为循环利用铜资源、降低成本、减少烧损,且满足不同牌号旧料可代用性等实际配料要求,建立了多目标实时配料模型,并进行模型转换,设计了精铜板带加工配料优化的人工免疫算法.重点研究了抗体表示、抗体与抗原及抗体与抗体亲和力的计算、初始种群产生等关键环节,给出了免疫算法的具体实现步骤.实验结果表明,与传统遗传算法相比,人工免疫算法可获得具有代表性的多个满意解,具有较强的多样性,便于在实际投料操作中选择. A multi-objective real time model for charging optimization is established to reuse copper resource,cut down cost,reduce metal burn-up,and meet the demand of substitutive degree among different brand of old materials and so on,the model is converted,the artificial immune algorithm (AIA) based charging optimization algorithm for refined copper strip producing is designed. Some key cycles such as antibody representation,affinity calculation between antibodies and the antigen as well as that among the antibodies,initial population generating and so on are especially studied,and the detail implementing steps are given. The simulation result shows that,compared with the genetic algorithm (GA),more cross-sectional satisfaction solutions with more diversity can be obtained by using AIA,thus,it is easy to select the most adaptive scheme during practical charging.
出处 《控制与决策》 EI CSCD 北大核心 2010年第7期1093-1097,共5页 Control and Decision
基金 国家科技支撑计划项目(2006BAH02A09 2006BAH02A07) 国家863计划项目(2007AA04Z189)
关键词 精铜板带 配料 多目标优化 人工免疫算法 亲和力 Refined copper strip Charging Multi-objective optimization Artificial immune algorithm Affinity
  • 相关文献

参考文献11

  • 1Ghoshal P K E Balance and burden calculation in blast furnace[J]. J of the Institution of Engineers, Part T: Technician's J, 1991, 72(1):1.
  • 2陈红武.烧结法氧化铝生料浆配料算法的改进[J].世界有色金属,2001(12):36-40. 被引量:6
  • 3Andersson A J, Andersson Margareta A T, Jonsson P G. Use of an optimisation model for the burden calculation for the blast furnace process[J]. Scandinavian J of Metallurgy, 2004, 33(3): 172-182.
  • 4阳春华,王晓丽,陶杰,桂卫华,王雅琳.铜闪速熔炼配料过程建模与智能优化方法研究[J].系统仿真学报,2008,20(8):2152-2155. 被引量:7
  • 5杜京义,冯景晓,苏力.基于RBF网络的合金配料预测模型的研究[J].炼钢,2007,23(3):32-35. 被引量:4
  • 6Dasgupta D. Artificial immune systems and their applications[M]. Heidelberg: Springer -Verlag, 1999.
  • 7Watkins A, Timmis J, Boggess L. Artifcial immune recognition system (AIRS): An immune-inspired supervised learning algorithm[J]. Genetic Programming and Evolvable Machines, 2004, 5(3): 291-317.
  • 8Hoineyr S A, Forrest S. Architecture for an artificial immune system[J]. Evolutionary Computation, 2000, 8(4): 443-473.
  • 9Fukuda T, Moil K, Tsukiyama M. Parallel search for multi-modal function optimization with diversity and learning of immune algorithm[C]. Artificial Immune Systems and Their Applications. Heidelberg: Springer- Verlag, 1999: 210-220.
  • 10Cayzer S, Aickelin U. A recommender system based on the immune network[C]. Proce of CEC2002. Honolulu, 2002: 807-813.

二级参考文献55

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部