期刊文献+

气候变化对汉江流域上游水文极值事件的影响 被引量:12

IMPACT OF CLIMATE CHANGE ON HYDROLOGICAL EXTREME EVENTS IN UPPER REACHES OF THE HANJIANG RIVER BASIN
下载PDF
导出
摘要 应用统计降尺度法,建立GCM和HBV流域水文模型耦合关系,分析和预测未来气候变化A2、B2情景下汉江流域径流量的变化情况.通过极值频率分析可以得到,2种情景下,相对于1961—2000年,汉江流域上游2011—2100年的径流量具有增加的趋势,洪水可能会更加频繁发生,并且A2情景较B2情景下洪峰流量更大. The impact of climate change on hydrology is a prevailing focus of research. The runoff in upper reaches of the Hanjiang River basin under A2 and B2 climate scenarios was predicted by the coupled relationship between GCM and HBV hydrologic model by means of statistical downscaling technology. By frequency analysis and extreme events study, the results show that the runoff in upper reaches of the Hanjiang River showed an increasing tendency under both scenarios during the period of 2011 to 2100 compared with that during the period of 1961 to 2000, and floods will occur more frequently. In particular, the magnitude of floods under A2 scenario is larger than that under B2 scenario.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期383-386,共4页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学青年基金资助项目(50809049) 教育部博士点学科新教师青年基金资助项目(200804861062)
关键词 气候变化 径流 频率分析 汉江 极值 climate change runoff frequency analysis Hanjiang River basin extreme event
  • 相关文献

参考文献10

  • 1Dai Aiguo, Qian Taotao, Trenberth Kevin E, et al. Changes in continental freshwater discharge from 1948 to 2004[J]. Journal of Climate, 2009, 22(10): 2773.
  • 2Working Group III Intergovernrnental Panel on Climate Change. Summary for polieymakers: emissions scenarios[M]. Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge Press, 2000.
  • 3《气候变化国家评估报告》编写委员会.气候变化国家评估报告[M].北京:科学出版社,2007.
  • 4Shivam Tripathi, Srinivas V V, Ravi S. Nanjundiah, downscaling of precipitation for climate change scenarios: a support vector machine approach [J].Journal of Hydrology. 2006, 330(3-4) :621.
  • 5Ghosh S, Mujumdar P P. Statistical downscaling of GCM simulations to streamflow using relevance vector machine [J].Advances in Water Resources. 2007(5) :1329.
  • 6陈华,郭靖,郭生练,陈桂亚,张俊.应用统计学降尺度方法预测汉江流域降水变化[J].人民长江,2008,39(14):53-55. 被引量:17
  • 7Yuh-Jye Lee, Mangasarian O L. SSVM: a smooth support vector machine for classification [J]. Computational Optimization and Applications, 2001, 22 (1):5.
  • 8陈华,郭靖,熊伟,郭生练,许崇育.应用光滑支持向量机预测汉江流域降水变化[J].长江科学院院报,2008,25(6):28-32. 被引量:8
  • 9Bergstrom S. Computer models of watershed hydrology [ M ]. Highlands Ranch, Co: Water Resources Publications, 1995 : 443-476.
  • 10赵彦增,张建新,章树安,许珂艳.HBV模型在淮河官寨流域的应用研究[J].水文,2007,27(2):57-59. 被引量:28

二级参考文献23

  • 1范丽军,符淙斌,陈德亮.统计降尺度法对未来区域气候变化情景预估的研究进展[J].地球科学进展,2005,20(3):320-329. 被引量:168
  • 2WILBY R L. Statistical Downscaling of Daily Precipitation Using Daily Airflow and Seasonal Teleconnection Indices[J]. Climate Research. 1998, 10(3) :163- 178.
  • 3WIDMANN M, BRETHERTON C S, SALATHE E P. Statistical Precipitation Downscaling over the Northwestern United States Using Numerically Simulated Precipitation as a Predictor[J]. Journal of Climate. 2003, 16(5) : 799 - 816.
  • 4WETTERHALL F, HALLDIN S, XU C. Statistical Precipitation Downscaling in Central Sweden with the Analogue Method[J]. Journal of Hydrology. 2005, 306 (1 - 4) : 174 - 190.
  • 5TRIPATHI S, SRINIVAS V V, NANJUNDIAH R S. Downscaling of Precipitation for Climate Change Scenarios: A Support Vector Machine Approach[J ]. Journal of Hydrology. 2006, 330(3 - 4) :621 - 640.
  • 6GHOSH S, MUJUMDAR P P. Statistical Downscaling of GCM Simulations to Strearnflow Using Relevance Vector Machine[J]. Advances in Water Resources. 2008,3 (1) : 132 - 146.
  • 7MANGASARIAN O L, MUSICANT D R. Successive Over relaxation for Support Vector Machines [J ]. IEEE Transactions on Neural Networks. 1999,10(5) : 1032 - 1037.
  • 8PLATT J. Sequential Minimal Optimization. A Fast Algorithm for Training Support Vector Machines [ M ]. Cambridge, MA: MIT Press, 1999: 185-208.
  • 9JOACHIMS T. Making Large-scale Support Vector Ma- chine Learning Practical [M]. Cambridge, MA: MIT Press, 1999:325 - 332.
  • 10LEE Y, MANGARASIAN O L. SSVM: A Smooth Support Vector Machine for Classification[J]. Computational Optimization and Applications. 2001,22 ( 1 ) : 5 - 21.

共引文献132

同被引文献163

引证文献12

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部