期刊文献+

一类含不确定项的离散混沌系统的同步控制

Synchronization Control for a Class of Discrete-time Chaotic Systems with Uncertainty
下载PDF
导出
摘要 研究了一类含不确定项的离散混沌系统的同步控制.通过构造动态补偿器,给出了一个新的同步控制器设计方法,从而有效地抑制了不确定项的影响.由于不使用Lyapunov函数,避开了复杂的求导和放大运算,计算简单.该方法也可以用来解决其他类型的混沌系统的同步问题.最后,用仿真算例验证了所给方法的有效性。 In this paper,the synchronization control for a class of discrete-time chaotic systems with uncertainties is discussed. By constructing dynamic compensator,a new synchronization controller is proposed,and the effect of uncertainties is inhibited success-fully. Due to the useless of Lyapunov function,the complex derivation and enlarge computing are avoided,and computing is simple. The proposed method can be applied to solving the synchronization of any other discrete-time chaotic systems. Finally,numerical simulations are provided to verify the effectiveness and feasibility of the proposed method.
出处 《微计算机信息》 2010年第19期33-35,共3页 Control & Automation
基金 基金申请人:李文林 项目名称:滑模变结构控制及其在混沌同步混沌反同步中的应用 基金颁发部门:国家自然科学基金委(60850004) 河南省自然科学基金资助项目(0611051200)
关键词 离散混沌系统 动态补偿器 不确定项 discrete-time chaotic system dynamic compensator uncertainty
  • 相关文献

参考文献16

  • 1Pecora LM, Carroll TL. Synchronization in chaotic systems [J]. Phys Rev Lett 1990; 64(8): 821 -4.
  • 2Ju HP. Adaptive synchronization of hyperchaotic Chen system with uncertain parameters [J]. Chaos, Solitons & Fractals 2005; 26: 959 - 64.
  • 3Yassen MT. Controlling chaos and synchronization for new chaotic system using linear feedback control [J]. Chaos, Solitons & Fractals 2005; 26: 913 - 20.
  • 4Zhang G, Liu Z, Ma Z. Generalized synchronization of different dimensional chaotic dynamical systems [J]. Chaos, Solitons & Fractals 2007; 32(2): 773 - 9.
  • 5Yang XS, Chen G. Some observer-based criteria for discrete- time generalized chaos synchronization [J]. Chaos, Solitons & Fractals 2002; 13:1303 - 8.
  • 6Li Z, Xu D. A secure communication scheme using projective chaos synchronization[J]. Chaos, Solitons & Fractals 2004; 22:477- 481.
  • 7王雪梅,王帅.统一混沌系统及其在安全通信中的应用[J].微计算机信息,2007(05X):57-58. 被引量:3
  • 8Bu S, Wang BH. Improving the security of chaotic encryption by a simple modulating method [J]. Chaos, Solitons & Fractals 2004; 19:919 - 24.
  • 9Alvarez G, Li S, Montoya F, Pastor G, Romera M. Breaking projective chaos synchronization secure communication using filtering and generalized synchronization [J]. Chaos, Solitons & Fractals 2005; 24:775 - 83.
  • 10Mosekilde E, Lading B, Yanchuk S, Maistrenko Y. Bifurcation structure of a model of bursting pancreatic cells. BioSystems [J]. 2001; 63:3 - 13.

二级参考文献7

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部