期刊文献+

Strategies for h-Adaptive Refinement for a Finite Element Treatment of Harmonic Oscillator Schrodinger Eigenproblem

Strategies for h-Adaptive Refinement for a Finite Element Treatment of Harmonic Oscillator Schrdinger Eigenproblem
下载PDF
导出
摘要 A Schrodinger eigenvalue problem is solved for the 219 quantum simple harmonic oscillator using a finite element discretization of real space within which elements are adaptively spatially refined. We compare two competing methods of adaptively discretizing the real-space grid on which computations are performed without modifying the standard polynomial basis-set traditionally used in finite element interpolations; namely, (i) an application of the Kelly error estimator, and (ii) a refinement based on the local potential level. When the performance of these methods are compared to standard uniform global refinement, we find that they significantly improve the total time spent in the eigensolver.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第6期1017-1023,共7页 理论物理通讯(英文版)
基金 Developed under the Auspices of the Development Projects N N519 402837 and R15 012 03 Founded by the Polish Ministry of Science and Higher Education
关键词 adaptive finite element analysis Harmonic oscillator problems Schrodinger equation 有限元离散 细化处理 自适应 薛定谔 特征值 谐振子 标准多项式 空间网格
  • 相关文献

参考文献31

  • 1S.R. White, J.W. Wilkins, and M.P. Teter, Phys. Rev. B 39 (1989) 5819.
  • 2C.M. Bender, K.A. Milton, D.H. Sharp, and L.M. Simmons Jr., Phys. Rev. D 32 (1983) 1476.
  • 3C.M. Bender and K.A. Milton, Phys. Rev. D 34 (1986) 3149.
  • 4O. Kullie and D. Kolb, Eur. Phys. J. D 17 (2001).
  • 5N. Elander, S. Levin, and E. Yarevsky, Phys. Rev. A 67 (2003) 062508.
  • 6M. Salci, S.B. Levin, and N. Elander, Phys. Rev. A 69 (2004) 044501.
  • 7J.Y. Hsu, C.H. Lin, and C.Y. Cheng, Phys. Rev. A 71 (2005) 052502.
  • 8H. Kunz, T. Schiipbach, and M.A. Dupertuis, Phys. Rev. E 76 (2007).
  • 9Z. Romanowski, Molecular Physics 107 (2009) 1339.
  • 10L. Ramdas Ram-Mohan, Finite Element and Boundary Element Applications in Quantum Mechanics, Oxford University Press, New York (2002).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部