期刊文献+

基于高速球形摄像机的运动目标检测与实时跟踪系统 被引量:5

Moving Target Detecting and Tracking System Based on High Speed Spherical Camera
下载PDF
导出
摘要 利用高速球形摄像机和图像采集与处理单元,设计了一种运动目标检测与实时跟踪系统.首先用混合高斯背景模型实现对运动目标所在区域的识别,由此确定运动区域的质心,并以该质心为中心初始化跟踪窗口;然后在目标区域内提取颜色特征,通过CamShift算法计算目标的精确位置并调整搜索窗口大小.系统利用这些信息,通过串口控制高速球形摄像机的运动,使目标始终位于摄像头的视场范围内,并尽可能位于视场中央,以实现对运动目标的快速准确的实时跟踪.在艾立克一体化球形摄像机上进行了实验,验证了本系统的有效性. A system for automatic detecting and real-tracking the moving target has been designed based on high speed spherical camera (HSSC). Firstly, the region having the moving target is identified by mixture model of Gausslan, and the centroid of this region is determined as the center of initializing window for tracking. Then the color feature of target in the region is extracted and the CamShift algorithm is used to calculate the exact location of the target and adjust the size of search window. Finally the information about the target location is transmitted by serial communication to control the HSSC in order to track the target to ensure it being inside of scene all along. The experiment is performed with HSSC E588/G3-HP and verifies the validity of the system.
出处 《中南民族大学学报(自然科学版)》 CAS 2010年第2期80-83,112,共5页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家民委自然科学基金资助项目(09ZN01)
关键词 高速球形摄像机 混合高斯模型 CAMSHIFT算法 目标检测和跟踪 high speed spherical eamera mixture model of Gaussian CamShift algorithm target detecting and tracking
  • 相关文献

参考文献10

  • 1Collins R T, Lipton A J, Kanade T. Introduction to the special section on video surveillance [J]. IEEE Trans on Pattern Anaysis and Machine Intelligence, 2000, 22(8): 745-746.
  • 2Bradski G R, Clara S. Computer vision face tracking for use in a perceptual user [J]. Intelligence Technology Journal, 1998(2) : 1-15.
  • 3Dorin C, Visvanathan R, Peter M. Real-time tracking of non rigid objects using meanshift [J]. IEEE Computer Vision and Pattern Recognition, 2000 (2) : 1 422-1 429.
  • 4Cheng Y. Mean shift, mode seeking, and clustering [J]. IEEE Trans on Pattern Anaysis and Machine Intelligence, 1995(17) : 790-799.
  • 5Nouar O D, Ali G, Raphael C. Improved object tracking with CamShift algorithm [ C]. IEEE International Conference on Acoustics Speech and Signal Procession, 2006 (2) : 675-660.
  • 6Barron J, Fleet D, Beauchemin S. Performance of optical flow techniques [J ]. International Journal of Computer Vision, 1994,12 (1): 42-77.
  • 7董蓓,谢勤岚,贾茜.基于Camshift算法的运动目标实时跟踪系统[J].现代电子技术,2008,31(19):116-118. 被引量:8
  • 8Haritaoglu I, Harwood D, Davis L S. W^4: Real-time surveillance of people and their activities [-J]. IEEE Tran on Pattern Analysis and Machine Intelligence,2000,22(8): 809-830.
  • 9Daniela Hall, Nasciment J, Ribeir P, et al. Comparison of target detection algorithms using adaptive background models [C ]. The Second IEEE International workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. IEEE Computer Society, 2005 (10) : 113-120.
  • 10Gonzalez R C,Woods R E.数字图像处理[M].2版.朱志刚,译.北京:电子工业出版社,2003.

二级参考文献10

  • 1张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 2Bradski Gary R. Computer Vision Face Tracking for Use in a Perceptual User Interface [EB/OL].http://developer. intel. com/technology/itj/q21998/pdf/camshaft, pdf.
  • 3Dorin Comaniciu, Visvanathan Ramesh, Peter Meer. Real- time Tracking of Non rigid Objects using Mean--Shift[J]. IEEE Computer Vision and Pattern Recognition, 2000(2):1422-1429.
  • 4Cheng Y. Mean Shift, Mode Seeking, and Clustering[J]. IEEE Trans. Pattern Anal. Machine Intell. , 1995 (17) : 790 -799.
  • 5Zhai Haiting,Wu Xiaojuan, Han Hui. Research of a Real- time Hand Tracking Algorithm[C]. IEEE International Conference on Neural Networks and Brain,2005:1233- 1235.
  • 6Pan Feng,Wang Xuanyin,Xiang Guixian,et al. A Kind of New Tracking Algorithm of Movement Object [J]. Optics Engineering, 2005,32 (1) : 43 - 46,70.
  • 7Nouar OULD- DRIS, Ali Ganoun, Raphael Canals. Improved Object Tracking with Camshift Algorithm[C]. IEEE International Conference on Acoustics, Speech and Signal Procession, 2006.
  • 8Liu Xia,Chu Hongxia,Li Pingjun. Research of the Improved Camshift Tracking Algorithm[C]. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, China, 2007.
  • 9Allen John G, Xu Richard Y D, Jin Jesse S. Object Tracking Using Camshift Algorithm and Multiple Quantized Feature Spaecs[C]. In: Pan- Sydney Area Workshop on Visual Information Processing VIP2003. Sydney, Australia, 2003 : 1 - 5.
  • 10Chu Hongxia, Ye Shujiang, Guo Qingchang, et al. Object Tracking Algorithm Based on Camshift Algorithm Combinating with Difference in Frame[C]. Proceedings of the IEEE International Conference on Automation and Logistics,China,2007.

共引文献11

同被引文献30

  • 1邢军.基于Sobel算子数字图像的边缘检测[J].微机发展,2005,15(9):48-49. 被引量:57
  • 2张运楚,梁自泽,李恩,谭民.基于C-均值聚类的视觉监控背景图像构建算法[J].计算机工程与应用,2006,42(14):45-47. 被引量:10
  • 3尹勇,欧光军,关荣锋.DSP集成环境CCS开发指南[M].北京:北京航空航天大学出版社,2003.
  • 4Texas Instruments Incorporated.TM320C6000 Optimizing Compiler User' s Guide[M], 2002.
  • 5Texas Instruments Incorporated.TM320C6000 Assembly Language Tools User' s Guide[M], 2002.
  • 6Comaniciu D, Ramesh V, Meer P. Real time tracking of non rigid objects using mean-shift [J]. IEEE Computer Vision and Pattern Recognition, 2000,(2) :1422- 1429.
  • 7Ghijsen M. Facial expression analysis for human computer interaction[ D ]. Twente: University of Twente, 2004.
  • 8Liu Yazhou, Yao Hongxun, Gao Wen. Nonparametric background generation [ J ]. J Vis Commun Image R, 2007 ( 18 ) : 253-263.
  • 9郭绪阳,祁小辉,田李庄.基于积分分离PID控制的交流伺服系统[J].现代电子技术,2007,30(19):163-164. 被引量:17
  • 10冈萨雷斯.数字图像处理[M].2版.北京:电子工业出版社,2005.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部