期刊文献+

多个体博弈多代共存的公共渔业资源模型及分析

Analysis of Multi-Agent Game for Multi-Generational Coexistence Fishery Resources Model
下载PDF
导出
摘要 假设渔业资源生长满足多代共存的Logistic模型,利用多个体博弈达到Nash均衡时的捕捞量得到了总收获函数,建立了多个体博弈公共渔业资源的二维动力学模型,使用非线性动力学分析方法对系统的正不动点的存在性、局部稳定性进行了分析,并用数值模拟研究了不动点的局部分叉.使用映射的奇异集理论给出了可行吸引域的定界方法与全局分叉,再结合数值模拟得到了渔业资源不枯竭的条件. In this paper, the growth of fishery resources is supposed as the multi-generational coexistence Logistic model, multi-agent game which satisfies Nash equilibrium conditions is used to get the total harvest function, and the two-dimensional dynamic model of multi-agent games in common fishery resources is established. The non- linear dynamic methods are used to analyze the existence of positive fixed points, local stability of the model, and numerical simulation is used to verify the local bifurcations of fixed points. The singular set theory of mapping is used to get feasible attractive basin boundary and analyze the global bifurcation, and numerical simulation isused to get unexhausted conditions.
出处 《中南民族大学学报(自然科学版)》 CAS 2010年第2期100-105,共6页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(10871209) 中南民族大学自然科学基金资助项目(YZZ06027)
关键词 渔业资源 多代共存的Logistic模型 NASH均衡 非线性分析 正不动点 局部稳定性 数值模拟 奇异集理论 全局分叉 可持续利用 fishery resources multi-generational coexistence Logistic model Nash equilibrium nonlinear analysis positive fixed point local stability numerical simuiation singular set theory global bifurcation sustainable utilization
  • 相关文献

参考文献9

  • 1Mckelvey R. Game theoretic insight into the international management of fisheries [J]. Science, 1968,162:1 243-1 247.
  • 2Maynard S. Mathematical ideas in biology[J]. Cambridge : Cambridge University Press, 1968.
  • 3Levine S H, Scudo F M, Plunkett D. Persistence and convergence of ecosystems: an analysis of some second order difference equations [J]. Journal of Mathematical Biology, 1977(4) : 171-182.
  • 4Gu Enguo. The feasible domains and their bifurcations in an extended Logistic model with an external interference[J]. International Journal of Bifurcation and Chaos, 2007,17(3) :877-889.
  • 5陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1998..
  • 6顾恩国,褚青涛.不同理性两个体捕捞公共渔业资源的非线性分析[J].中南民族大学学报(自然科学版),2009,28(2):109-115. 被引量:8
  • 7Bischi G I, Kopel M, Szidarovszky F. Expectation stock dynamics in multi-agent fisheries[J]. Annals of Operations Research, 2005,137 : 299-300.
  • 8Bischi G I, Szidarovszky F. Harvesting dynamics in protected and unprotected areas [J]. Journal of Economic and Organization, 2007, 62:364-384.
  • 9Sethi R, Somanathan E. The evolution of social norms in common property resource use [J]. American Economic Review, 1996, 86 : 765-789.

二级参考文献12

  • 1Food and Agriculture Organization.The state of worldfisheries and aquaculture[R].SofialFAO,2004.
  • 2Garcia S M,Graiger J R.Gloom or doom?The future ofmarine capture fisheries[J].Philosophical Transitionsof the Royal Society,2005.B360:21-24.
  • 3Clark C W.Mathematical bioeconomicl the optimalmanagement of renewable resourcesEM].New York:Wiley,1976.
  • 4Bischi G I,Kopel M,Szidarovszky F.Expectation-stockdynamics in muhi-agent fisheries[J].Annals of Operations Research,2005,1 37:299-329.
  • 5Mesterton-Gibbons M.Game.theoretic resource mode.ling[J].Natural Resource Modeling,1993,7:93-147.
  • 6Bischi G l,Szidarovszky F.Harvesting dynamics inprotected and unprotected areas[J].Journal ofEconomic and organization,2007.62:370-384.
  • 7Mckelvey R.Game theoretic insight into the internstional management of fisheries[J].Natural Resource Modeling,1997,10:129-171.
  • 8Agiza H N,Hegazi A S,Elsadany A A.The dynamics of in bowley's model with bounded rationality[J].Chaos,Solitons and Fractals,2001,9:1 705-1 717.
  • 9Schaefer M B.Some aspects of the dynamics of populations important to the management of commercial marine fisheries[J].Bulletin of the Inter.American Tropical Tuna Commission,1954,1:26-56.
  • 10Robinson R C.An introduction to dynamical systems lcontinuous and discrete[M].New Jerseyl Pearson/Prentice Hall.2004:516-517.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部