摘要
假设渔业资源生长满足多代共存的Logistic模型,利用多个体博弈达到Nash均衡时的捕捞量得到了总收获函数,建立了多个体博弈公共渔业资源的二维动力学模型,使用非线性动力学分析方法对系统的正不动点的存在性、局部稳定性进行了分析,并用数值模拟研究了不动点的局部分叉.使用映射的奇异集理论给出了可行吸引域的定界方法与全局分叉,再结合数值模拟得到了渔业资源不枯竭的条件.
In this paper, the growth of fishery resources is supposed as the multi-generational coexistence Logistic model, multi-agent game which satisfies Nash equilibrium conditions is used to get the total harvest function, and the two-dimensional dynamic model of multi-agent games in common fishery resources is established. The non- linear dynamic methods are used to analyze the existence of positive fixed points, local stability of the model, and numerical simulation is used to verify the local bifurcations of fixed points. The singular set theory of mapping is used to get feasible attractive basin boundary and analyze the global bifurcation, and numerical simulation isused to get unexhausted conditions.
出处
《中南民族大学学报(自然科学版)》
CAS
2010年第2期100-105,共6页
Journal of South-Central University for Nationalities:Natural Science Edition
基金
国家自然科学基金资助项目(10871209)
中南民族大学自然科学基金资助项目(YZZ06027)
关键词
渔业资源
多代共存的Logistic模型
NASH均衡
非线性分析
正不动点
局部稳定性
数值模拟
奇异集理论
全局分叉
可持续利用
fishery resources
multi-generational coexistence Logistic model
Nash equilibrium
nonlinear analysis
positive fixed point
local stability
numerical simuiation
singular set theory
global bifurcation
sustainable utilization