期刊文献+

基于OLS-RBF网络的JPEG2000图像无参考质量评估方法

No-reference quality assessment metric for JPEG2000 based on OLS-RBF network
下载PDF
导出
摘要 提出了一种适用于JPEG2000图像的无参考质量评估方法。首先结合人类视觉系统的特性,在重建图像结构纹理区域内检测边缘轮廓,并根据各个边缘点的梯度方向提取沿垂直于该梯度方向的像素集作为边缘特征;然后采用基于正交最小二乘法设计的径向基函数网络(OLS-RBF),通过边缘特征和图像主观质量的拟合,训练得到无参考客观质量评估模型,完成对JPEG2000图像的客观质量估计。与已有的一些方法的对比实验结果表明,本文方法对JPEG2000图像的客观质量评估与主观质量评估具有更好的一致性。 A no-reference image quality assessment metric for JPEG2000 code images is presented. First,the edge points in the structure-texture region of the reconstructed picture are detected based on the principle of Human Visual System ( HVS) . Then according to the gradient direction of the edge point,the edge feature is extracted,which is comprised of the pixels in the neighborhood of the edge point and is perpendicular to the gradient direction. Finally,a no-reference quality assessment model based on OLS-RBF network is trained to predict the quality of JPEG2000 coded images by using the image feature and the image subjective quality rating. Experimental results show that,compared with the metrics proposed by Ong and by Marziliano,the performance of the proposed metric is more consistent with subjective evaluation.
作者 张桦 陈耀武
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第4期1127-1132,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 浙江省科技计划重大科技攻关项目(2006C11200)
关键词 通信技术 图像质量评估 无参考 人类视觉系统 径向基函数 JPEG2000 communciation image quality assessment no-reference human visual system radial basis function JPEG2000
  • 相关文献

参考文献10

  • 1De Angelis A, Moschitta A, Russo F, et al. Image quality assessnfent: an overview and some metrological eonsiderations[C]//IEEE Int Workshop on Advanced Methods for Uncertainty Estimation in Measurement, Sardagna, Trento, Italy, 2007:47-52.
  • 2Corriveau P, Webster A. VQEG final report from video quality expert group on the validation of objective model of video quality assessment, phase Ⅱ [DB/OL]. [2008-10-20]. http://www. its. bldrdoc. gov/vqeg/projects/frtv _ phaseⅡ/downloads/VQE- GⅡ_Final_Report. pdf.
  • 3Ong E P, Lin W, Lu Z, et al. No-reference JPEG- 2000 image quality metric[C]//IEEE International Conference on Multimedia and Expo,2003;545-548.
  • 4Marziliano P,Dufaux F,Winkler S, et al. Perceptual blur and ringing metrics: application to JPEG2000 [J]. Signal Processing: Image Communication, 2004, 19 (2): 163-174.
  • 5Sheikh H R,BovikA C,Cormack I.,et al. No-reference quality assessment using natural scene statisties: JPEG2000[J]. IEEE Transactions on hnage Processing, 2005, 14 (11) : 1918-1927.
  • 6Sazzad Z M P, Kawayoke tures based no reference Y, Horita Y. Spatial fea image quality assessment for JPEG2000 [J]. Image Communication, 2008,23 (4) :257-268.
  • 7Engelke U,Zepernick H J. An artificial neural network for quality assessment in wireless imaging based on extraction of structural information[C]// IEEE lnt Conf on Acoustics, Speech and Signal Processing, Honolulu, USA, 2007:1249-1252.
  • 8Sheikh H R,Wang Z,Bovik A C,et al. LIVE image quality assessment database release 2 [ DB/OL]. [2008-07-23]. http://live. ece. utexas. edu/research/ quality, 2007.
  • 9Tang C W. Spatiotemporal visual considerations for video coding[J]. IEEE Transactions on Multimedia, 2007,9(2) :231-238.
  • 10Chen S,Cowan C F N,Grant P M. Orthogonal least squares learning algorithm for radial basis function networks [J]. IEEE Transactions on Neural Networks,1991,2(2) :302-309.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部