期刊文献+

Realization of Numbers As the Degrees of Maps between Manifolds

Realization of Numbers As the Degrees of Maps between Manifolds
原文传递
导出
摘要 We determine the set of degrees between some classes of oriented closed (n - 1)-connected 2n-manifolds by using the arithmetic theory of quadratic forms. We determine the set of degrees between some classes of oriented closed (n - 1)-connected 2n-manifolds by using the arithmetic theory of quadratic forms.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第8期1413-1424,共12页 数学学报(英文版)
基金 Supported by Morningside Center of Mathematics, National Natural Science Foundation of China (Grant Nos. 10325105 and 10531060) KRF (2003-070-C00001)
关键词 Oriented closed manifold degree of a map integral quadratic form Oriented closed manifold, degree of a map, integral quadratic form
  • 相关文献

参考文献10

  • 1Siegberg, H.: Brouwer degree: history and numerical computation. Numerical solution of highly non- linear problems, Sympos. Fixed Point Algorithms and Complementarity Problems, Univ. Southampton, Southampton, 1979, North-Holland, Amsterdam-New York, 1980, 389-411.
  • 2Siegberg, H.: Some historical remarks concerning degree theory. Amer. Math. Monthly, 88(2), 125-139 (1981).
  • 3Wall, C. T. C.: Classification of (n- 1)-connedcted 2n-manifolds. Ann. of Math., 75, 163-198 (1962).
  • 4Duan, H., Wang S.: Non-zero degree maps between 2n-manifolds. Acta Mathematica Sinica, English Series, 20, 1-14 (2004).
  • 5Duan, H., Wang, S.: The degrees of maps between manifolds. Math. Z., 244, 67-89 (2003).
  • 6Ding, Y. H., Pan, J. Z.: Computing degree of maps between manifolds. Acta Mathematica Sinica, English Series, 21, 1277-1284 (2005).
  • 7Colliot-Thelene, J.-L., Xu, F.: Brauer-Manin obstruction for integral points of homogeneous spaces and representations by integral quadratic forms. Compositio Math., 145, 309-363 (2009).
  • 8O'Meara, O. T.: Introduction to Quadratic Forms, Springer-Verlag, New York, 1973.
  • 9O'Meara, O. T.: The integral representations of quadratic forms over local fields. Amer. J. Math., 80, 843 -878 (1958).
  • 10Serre, J.-P.: A Course in Arithmetic, Springer-Verlag, New York, 1973.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部