期刊文献+

Weighted Endpoint Estimates for Maximal Commutators Associated with the Sections

Weighted Endpoint Estimates for Maximal Commutators Associated with the Sections
原文传递
导出
摘要 We prove endpoint estimates for maximal commutators for a class of singular integral operators related to the real analysis of the Monge Ampere equation. We prove endpoint estimates for maximal commutators for a class of singular integral operators related to the real analysis of the Monge Ampere equation.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第8期1463-1474,共12页 数学学报(英文版)
基金 Supported by National Science Foundationof China (Grant Nos. 10571156 and 10871173)
关键词 Weighted inequalities maximal commutators Monge-Ampere equation the sharp maximal function Weighted inequalities, maximal commutators, Monge-Ampere equation, the sharp maximal function
  • 相关文献

参考文献16

  • 1Caffarelli, L. Gutierrez. C.: Real analysis related to the Monge-Ampere equation. Trans. Amer. Math. Soc., 348, 1075-1092 (1996).
  • 2Caffarelli, L., Gutierrez, C.: Singular integrals related to Monge-Ampere equation. In: Wavelet Theory and Harmonic Analysis in Applied Sciences, Buenos Aires, 1995. In: Appl. Numer. Harmon. Anal., Birkhauser Boston, Boston, MA, 1997, 3-13.
  • 3Incognito, A.: Weak-type (1, 1) inequality for the Monge-Ampere equation SIOs. J. Fourier Anal. Appl., T, 41-48 (2001).
  • 4Tang, L.: Weighted estimates for singular integral operators and commutators associated with the sections. J. Math. Anal. Appl., 333, 577-590 (2007).
  • 5Perez, C.: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal., 128, 163-185 (1995).
  • 6Alphonse, A. M.: An end point estimate for maximal commutators. J. Fourier Anal. Appl., 6, 449 456 (2000).
  • 7Aimar, H., Forzani, L., Toledano R.: Balls and quasi-metrics: A space of homogeneous type modeling the real analysis related to the Monge-Ampere equation. J. Fourier Anal. Appl., 4, 377-381 (1998).
  • 8Gutierrez, C., Huang, Q.: Geometric properties of solutions to the Monge-Ampere equation. Trans. Amer. Math. Soc., 352, 4381- 4396 (2000).
  • 9Hu, G., Yang, D., Yang, Do.: Boundedness of maximal singular integral operators on spaces of homogeneous type and its applications. J. Math. Soc. Japan., 59, 323-349 (2007).
  • 10Rao, M., Ren, Z.: Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math., Vol. 146, Marcel Dekker, New York, 1991.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部