期刊文献+

Isometries on the Quasi-Banach Spaces L^p (0 < p <1)

Isometries on the Quasi-Banach Spaces L^p (0 < p <1)
原文传递
导出
摘要 We study the extension of isometries between the unit spheres of quasi-Banach spaces Lp for 0〈p〈1. We give some sufficient conditions such that an isometric mapping from the the unit sphere of Lp(μ) into that of another LP(ν) can be extended to be a linear isometry defined on the whole space. We study the extension of isometries between the unit spheres of quasi-Banach spaces Lp for 0〈p〈1. We give some sufficient conditions such that an isometric mapping from the the unit sphere of Lp(μ) into that of another LP(ν) can be extended to be a linear isometry defined on the whole space.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第8期1519-1524,共6页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant Nos. 10871101, 10926121) Research Fund for the Doctoral Program of Higher Education (Grant No. 20060055010)
关键词 Quasi-Banach spaces isometric mappings unit spheres Quasi-Banach spaces, isometric mappings, unit spheres
  • 相关文献

参考文献2

二级参考文献4

  • 1Daryl Tingley.Isometries of the unit sphere[J].Geometriae Dedicata.1987(3)
  • 2Rassias,Th. M.Semrl, P,, On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mapping, Proc[].Journal of the American Mathematical Society.1993
  • 3Baker,J. A.Isometries in normed spaces, Amer.Math[].Monthly.1971
  • 4Ma Yumei.Isometries of the unit sphere, Acta Math[].Science.1992

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部