On the Generalized 2-D Stochastic Ginzburg-Landau Equation
On the Generalized 2-D Stochastic Ginzburg-Landau Equation
摘要
This paper proves the existence and uniqueness of solutions in a Banach space for the generalized stochastic Ginzburg-Landau equation with a multiplicative noise in two spatial dimensions. The noise is white in time and correlated in spatial variables. The condition on the parameters is the same as in the deterministic case. The Banach contraction principle and stochastic estimates in Banach spaces are used as the main tool.
This paper proves the existence and uniqueness of solutions in a Banach space for the generalized stochastic Ginzburg-Landau equation with a multiplicative noise in two spatial dimensions. The noise is white in time and correlated in spatial variables. The condition on the parameters is the same as in the deterministic case. The Banach contraction principle and stochastic estimates in Banach spaces are used as the main tool.
参考文献12
-
1Doering, C. R.: On the Nonlinear Evolution of Patterns (Modulation Equations and Their solutions), Ph.D. thesis, University of Utrecht, the Netherlands, 1990.
-
2Doering, C. It., Gibbon, J. D'., Holm, D., et al: Low-dimensional behavior in the complex Ginzburg-Landau equations. Nonlinearity, 1, 279-309 (1988).
-
3Doering, C. R., Gibbon, J. D., Levermore, C. D.: Weak and strong solutions of the complex Ginzburg- Landau equation. Physica D, 71, 285 318 (1994).
-
4Duan, J.,-Holmes, P.: On the Cauchy problem of a generalized Ginzburg-Landau equation. Nonlinear Anal., 22, 1033-1040 (1994).
-
5Duan, J., Holmes, P., Titi, E. S.: Global existence theory for a generalized Ginzburg-Landau equation. Nonlinearity, 6, 915- 933 (1993).
-
6Gao, H., Duan, J.: On the initial value problem for the generalied 2D Ginzburg-Landau equation. J. Math. Anal. Appl., 216, 536-548 (1997).
-
7Guo, B., Wang, B.: Finite dimensional behaviour for the derivative Cinzburg-Landau equation in two spatial dimensions. Physica D, 89, 83- 99 (1995).
-
8Li, Y., Guo, B.: Global existence of solutions to the 2D Cinzburg-Landau equation, J. Math. Anal. Appl., 249, 412-432 (2000).
-
9Barton-Smith, M.: Global solution for a stochastic Ginzburg-Landau equation with multiplicative noise. Stochastic Analysis and Application, 22(1), 1-18 (2004).
-
10de Bouard, A., Debussche, A.: A stochastic nonlinear SchrSdinger equation with multiplicative noise. Comm. Math. Phys., 205, 161-181 (1999).
-
1池光胜,李功胜,张芳,张涛.一个分数阶扩散方程的定解问题的数值解法[J].四川理工学院学报(自然科学版),2013,26(5):86-89.
-
2刘立,吴大进.随机共振研究新进展[J].大学物理,2009,28(9):46-50. 被引量:7
-
3郭伯灵,王碧祥.WEAK SOLUTIONS TO THE TWO-DIMENSIONAL DERIVATIVE GINZBURG-LANDAU EQUATION[J].Acta Mathematicae Applicatae Sinica,1999,15(1):1-8.
-
4Chun Li,Fei Long,Dong-Cheng Mei.Correlated effects of noise on symmetry of an asymmetric bistable system[J].Frontiers of physics,2015,10(2):87-90.
-
5吕洪升.联系实际背景,巧释数学定义[J].巢湖学院学报,2002,4(3):15-17.
-
6Yan-Mei Kang,Mei Wang,Yong Xie.Stochastic resonance in coupled weakly-damped bistable oscillators subjected to additive and multiplicative noises[J].Acta Mechanica Sinica,2012,28(2):505-510. 被引量:3
-
7寇俊克.一类回归函数小波估计的相合性[J].北京工业大学学报,2015,41(4):636-640. 被引量:2
-
8高丰平.利用变化量解题例析[J].数学教学研究,2013,32(3):31-33.
-
9贾化冰.非线性反应扩散方程新形式分离解(英文)[J].宝鸡文理学院学报(自然科学版),2015,35(2):1-9.
-
10张良英,金国祥,曹力.一级近似下的单模激光增益模型随机共振[J].物理学报,2012,61(7):210-215.