期刊文献+

Coincidence Theorem for Admissible Set-valued Mappings and Its Applications in FC-spaces

Coincidence Theorem for Admissible Set-valued Mappings and Its Applications in FC-spaces
原文传递
导出
摘要 A new coincidence theorem for admissible set-valued mappings is proved in FC-spaces with a more general convexity structure. As applications, an abstract variational inequality, a KKM type theorem and a fixed point theorem are obtained. Our results generalize and improve the corresponding results in the literature.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2010年第3期455-462,共8页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China (No. 10771173) the Natural Science Foundation of Henan Education Department (No. 2008B110012) the Science and Technology Program Project of Henan Province (No. 092300410187) the Youth Foundation of Luoyang Normal University
关键词 FC-SPACE coincidence theorem admissible set-valued mapping FC-space, coincidence theorem, admissible set-valued mapping
  • 相关文献

参考文献20

  • 1Ben-El-Mechaiekh, H., Deguire, P. Approachability and fixed points for non-convex set-valued maps. J. Math. Anal Appl., 170:477-500 (1992).
  • 2Deng, L., Xia, X. Generalized R-KKM theorems in topological space and their applications. J. Math Anal. Appl., 285:679 690 (2003).
  • 3Ding, X.P. Maximal clement theorems in product FC-spaees and generalized games. J. Math. Anal Appl., 305:29-42 (2005).
  • 4Ding, X.P. Generalized R-KKM type theorems in topological spaces with applications. Appl. Math. Lett., 18:1345-1350 (2005).
  • 5Eilenberg, S., Montgomery, D. Fixed point theorems for multivalued transformations. Amer. J. Math., 58:214-222 (1946).
  • 6Granas, A. On the Leray-Schauder alternative. Top. Meth. Nonlinear Anal., 2:225-231 (1993).
  • 7Horvath, C.D. Contractibility and general convexity. J. Math. Anal. Appl., 156:341-357 (1991).
  • 8Huang, J.H. The matching theorems and coincidence theorems for generalized R-KKM mapping in topological spaces. J. Math. Anal. Appl., 312:374-382 (2005).
  • 9Kakutani, S. A generalization of'Brouwer's fixed point theorem. Duke Math. J., 8:457-459 (1941).
  • 10Lassonde M. On the use of KKM multifunctions in fixed point theory and related topics. J. Math. Anal Appl., 97:151-201 (1983).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部