期刊文献+

Exponential Convergence in Probability for Empirical Means of Lévy Processes

Exponential Convergence in Probability for Empirical Means of Lévy Processes
原文传递
导出
摘要 Let (Xt)t≥0 be a Lévy process taking values in R^d with absolutely continuous marginal distributions. Given a real measurable function f on R^d in Kato's class, we show that the empirical mean 1/t ∫ f(Xs)ds converges to a constant z in probability with an exponential rate if and only if f has a uniform mean z. This result improves a classical result of Kahane et al. and generalizes a similar result of L. Wu from the Brownian Motion to general Lévy processes. Let (Xt)t≥0 be a Lévy process taking values in R^d with absolutely continuous marginal distributions. Given a real measurable function f on R^d in Kato's class, we show that the empirical mean 1/t ∫ f(Xs)ds converges to a constant z in probability with an exponential rate if and only if f has a uniform mean z. This result improves a classical result of Kahane et al. and generalizes a similar result of L. Wu from the Brownian Motion to general Lévy processes.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2010年第3期481-488,共8页 应用数学学报(英文版)
关键词 L6vy processes exponential convergence in probability large deviations functions with uniform mean L6vy processes, exponential convergence in probability, large deviations,functions with uniform mean
  • 相关文献

参考文献11

  • 1de Acosta, A. Large deviations for vector valued additive functionals of a Markov process: Low bound. Ann. Probab., 16:925-960 (1988).
  • 2Jain, N.C. Large deviation lower bounds for additive functionals of Markov processes. Ann. Prob., 18(3): 1071-1098 (1990).
  • 3Kahane, J.P., Peyriere, J., Wen, Z.Y., Wu, L. Moyennes uniformes et moyennes suivant une marche al~atoire. Prob. Th. Rel. Fields, 79:626-628 (1988).
  • 4Liu, W., Wu, L. Identification of the rate function governing the large deviation principle of additive functional of an irreducible Markov process. Accepted by EJP, 2009.
  • 5Nummelin, E. General irreducible Markov chains and non-negative operators. Cambridge University Press, Cambridge, 1984.
  • 6Rudin, W. Fourier analysis on groups. Interscience Publisher, New York, 1962.
  • 7Simon, B. Schrodinger Semigroups. Bulletin of The American Mathematical Society (New Series), 7(3): Nov. 1982.
  • 8Takeda, M. Large deviation principle for additive functionals of Brownian motion corresponding to Kato measures. Potential Analysis, 19:51~67 (2003).
  • 9Wu, L. Ergodic theroems for functions with uniform mean. Nankai subserie. Springer-Verlag, Lect. Notes in Math., 1494:204-207 (1992).
  • 10Wu, L. Exponential convergence in probability for empirical means of Brownian motion and of Random walks. J. Theor. Prob., 12(3): 661-673 (1999).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部