Exponential Convergence in Probability for Empirical Means of Lévy Processes
Exponential Convergence in Probability for Empirical Means of Lévy Processes
摘要
Let (Xt)t≥0 be a Lévy process taking values in R^d with absolutely continuous marginal distributions. Given a real measurable function f on R^d in Kato's class, we show that the empirical mean 1/t ∫ f(Xs)ds converges to a constant z in probability with an exponential rate if and only if f has a uniform mean z. This result improves a classical result of Kahane et al. and generalizes a similar result of L. Wu from the Brownian Motion to general Lévy processes.
Let (Xt)t≥0 be a Lévy process taking values in R^d with absolutely continuous marginal distributions. Given a real measurable function f on R^d in Kato's class, we show that the empirical mean 1/t ∫ f(Xs)ds converges to a constant z in probability with an exponential rate if and only if f has a uniform mean z. This result improves a classical result of Kahane et al. and generalizes a similar result of L. Wu from the Brownian Motion to general Lévy processes.
参考文献11
-
1de Acosta, A. Large deviations for vector valued additive functionals of a Markov process: Low bound. Ann. Probab., 16:925-960 (1988).
-
2Jain, N.C. Large deviation lower bounds for additive functionals of Markov processes. Ann. Prob., 18(3): 1071-1098 (1990).
-
3Kahane, J.P., Peyriere, J., Wen, Z.Y., Wu, L. Moyennes uniformes et moyennes suivant une marche al~atoire. Prob. Th. Rel. Fields, 79:626-628 (1988).
-
4Liu, W., Wu, L. Identification of the rate function governing the large deviation principle of additive functional of an irreducible Markov process. Accepted by EJP, 2009.
-
5Nummelin, E. General irreducible Markov chains and non-negative operators. Cambridge University Press, Cambridge, 1984.
-
6Rudin, W. Fourier analysis on groups. Interscience Publisher, New York, 1962.
-
7Simon, B. Schrodinger Semigroups. Bulletin of The American Mathematical Society (New Series), 7(3): Nov. 1982.
-
8Takeda, M. Large deviation principle for additive functionals of Brownian motion corresponding to Kato measures. Potential Analysis, 19:51~67 (2003).
-
9Wu, L. Ergodic theroems for functions with uniform mean. Nankai subserie. Springer-Verlag, Lect. Notes in Math., 1494:204-207 (1992).
-
10Wu, L. Exponential convergence in probability for empirical means of Brownian motion and of Random walks. J. Theor. Prob., 12(3): 661-673 (1999).
-
1倪前月,牛向阳.基于遗传算法和BP算法的混合算法[J].阜阳师范学院学报(自然科学版),2002,19(1):19-19. 被引量:1
-
2周晓钟,周皓,李杰力.随机变量序列的收敛性与距离(二)[J].齐齐哈尔师范学院学报(自然科学版),1994,14(1):1-4.
-
3任永,汪世界.以概率收敛的一个等价命题及其应用[J].大学数学,2004,20(2):107-109. 被引量:1
-
4闫莉,陈夏.鞅差序列加权和的收敛性(英文)[J].纺织高校基础科学学报,2010,23(2):151-154.
-
5唐亚宁,赵选民.半参数回归模型的误差分布的估计的大样本性质[J].纯粹数学与应用数学,2000,16(1):40-48. 被引量:2
-
6Tie Xin GUO,Xiao Lin ZENG.An L^0(F,R)-valued Function's Intermediate Value Theorem and Its Applications to Random Uniform Convexity[J].Acta Mathematica Sinica,English Series,2012,28(5):909-924. 被引量:2
-
7何文平,龚玮.独立模糊随机变量的强大数律[J].南通大学学报(自然科学版),2011,10(1):77-81.
-
8刘刚,高文军,刘娟.概率空间中随机变量序列的一类收敛性问题[J].沈阳航空工业学院学报,2008,25(4):89-91. 被引量:1
-
9赵俊,宗序平,陶伟.关于弱大数定律的一些讨论[J].大学数学,2008,24(5):179-183. 被引量:1
-
10钟镇权.用反例证明随机变量序列各种收敛性的关系[J].玉林师专学报,1999,20(3):4-6.