期刊文献+

A Note on a Quadratic Rational Map with Two Siegel Disks

A Note on a Quadratic Rational Map with Two Siegel Disks
原文传递
导出
摘要 Suppose f(z) is a quadratic rational map with two Siegel disks. If the rotation numbers of the Siegel disks are both of bounded type, the Hausdorff dimension of the Julia set satisfies Dim (J(f))〈2. Suppose f(z) is a quadratic rational map with two Siegel disks. If the rotation numbers of the Siegel disks are both of bounded type, the Hausdorff dimension of the Julia set satisfies Dim (J(f))〈2.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第7期1393-1402,共10页 数学学报(英文版)
基金 Supported by National Science Foundation of China (Grant No. 10671004) the Doctoral Education Program Foundation of China
关键词 Hausdorff dimension Siegel disk porous set Hausdorff dimension, Siegel disk, porous set
  • 相关文献

参考文献1

二级参考文献11

  • 1[11]Letho O,Virtanen K I.Quasiconformal Mappings in the Plane.Berlin:Springer,1973
  • 2[1]McMullen C T.Self-similarity of Siegel disks and Hausdorff dimension of Julia sets.Acta Math,1998,180:247-292
  • 3[2]Petersen C L.Local connectivity of some Julia sets containing a circle with an irrational rotation.Acta Math,1996,177:163-224
  • 4[3]Petersen C L.On the Julia set of a typical quadratic polynomial with a siegel disk.Ann of Math,2004,159:1-52
  • 5[4]Khinchin A Ya.Continued Fractions.New York:Dover,1992
  • 6[5]Lang S.Introduction to Diophantine Approximations.Berlin:Springer-Verlag,1995
  • 7[6]Herman M.Conjugaison quasisymetrique des homeomorphismes analytique des cercle a des rotations,Manuscript,1987
  • 8[7]Swiatek G.On critical circle mappings.Bol Soc Brasil (N.S.),1998,29:329-351
  • 9[8]Yoccoz J C.Il n'y a pas de contre-example de denjoy analytique.C R Acad Sci Paris,1994,298:141-144
  • 10[9]Carleson L,Gamelin T.Complex Dynamics.Berlin:Springer-Verlag,1993

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部