摘要
We build finite difference schemes for a class of fully nonlinear parabolic equations. The schemes are polyhedral and grid aligned. While this is a restrictive class of schemes, a wide class of equations are well approximated by equations from this class. For regular (C2,α) solutions of uniformly parabolic equations, we also establish of convergence rate of O(α). A case study along with supporting numerical results is included.
We build finite difference schemes for a class of fully nonlinear parabolic equations. The schemes are polyhedral and grid aligned. While this is a restrictive class of schemes, a wide class of equations are well approximated by equations from this class. For regular (C2,α) solutions of uniformly parabolic equations, we also establish of convergence rate of O(α). A case study along with supporting numerical results is included.