期刊文献+

STRONG SOLUTIONS OF THE COUPLED NAVIER-STOKES-POISSON EQUATIONS FOR ISENTROPIC COMPRESSIBLE FLUIDS 被引量:2

STRONG SOLUTIONS OF THE COUPLED NAVIER-STOKES-POISSON EQUATIONS FOR ISENTROPIC COMPRESSIBLE FLUIDS
下载PDF
导出
摘要 In this article, we are concerned with the strong solutions of the coupled Navier-Stokes-Poisson equations for isentropic compressible fluids in a domain Ω R^3. We prove the local existence of unique strong solutions provided that the initial data u0 and u0 satisfy a nature compatibility condition. The important point in this article is that we allow the initial vacuum: the initial density may vanish in an open subset of Ω. This is achieved by getting some uniform estimates and using a Schauder fixed point theorem. In this article, we are concerned with the strong solutions of the coupled Navier-Stokes-Poisson equations for isentropic compressible fluids in a domain Ω R^3. We prove the local existence of unique strong solutions provided that the initial data u0 and u0 satisfy a nature compatibility condition. The important point in this article is that we allow the initial vacuum: the initial density may vanish in an open subset of Ω. This is achieved by getting some uniform estimates and using a Schauder fixed point theorem.
作者 谭忠 张映辉
出处 《Acta Mathematica Scientia》 SCIE CSCD 2010年第4期1280-1290,共11页 数学物理学报(B辑英文版)
基金 Supported by National Natural Science Foundation of China-NSAF (10976026)
关键词 Strong solutions Navier-Stokes-Poisson equations Schauder fixed point theorem Strong solutions Navier-Stokes-Poisson equations Schauder fixed point theorem
  • 相关文献

参考文献18

  • 1Anile A M. An extended thermodynamic framework for the hydrodynamical modeling of semiconductors. Pitman Research Notes In Mathematics Series, 1995, 340:3-41.
  • 2Cerignani C. The Boltzmann equation and its applications//Applied Mathematical Sciences. New York: Springer-Valag, 1988.
  • 3Cercignani C, Illner R, Pulvirenti M. The mathematical theory of dilute gases//Applied Mathematical Sciences. New York: Springer-Verlag, 1994.
  • 4Choe H J, Kim H. Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J Differential Equations, 2003, 190:504-523.
  • 5Gerasimenko V I, Petrina Y D. The Boltzmann-Grad limit theorem (Russian). Dokl Akad Nauk Ukrain SSR Ser A, 1989, 11:12-16.
  • 6Kobayashi P T, Suzuki T. Weak solutions to the Navier-Stokes-Poisson equations. Preprint, 2004.
  • 7Lions P L. Mathematical Topics in Fluid Dynamics, Vol.2, Compressible Models. Oxford: Oxford Science Publication, 1998.
  • 8Maxcati P, Natalini R. Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation. Arch Rational Mech Anal, 1995, 129:129-145.
  • 9Marcati P, Natalini R. Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem. Proc Soc Edinburgh Sect A, 1995, 125(1): 115-131.
  • 10Markowich P A. The Steady-State Semiconductor Device Equations. New York: Springer-Verlag, 1986.

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部