期刊文献+

STABILITY OF GASEOUS STARS IN THE NON-ISENTROPIC CASE 被引量:2

STABILITY OF GASEOUS STARS IN THE NON-ISENTROPIC CASE
下载PDF
导出
摘要 The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this article is concerned with the nonlinear stability of gaseous stars in the non-isentropic case, when 34 γ2, S(x,t) is a smooth bounded function. First, we verify that the steady states are minimizers of the energy via concentration-compactness method; then using the variational approach we obtain the stability results of the non-isentropic flow. The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this article is concerned with the nonlinear stability of gaseous stars in the non-isentropic case, when 34 γ2, S(x,t) is a smooth bounded function. First, we verify that the steady states are minimizers of the energy via concentration-compactness method; then using the variational approach we obtain the stability results of the non-isentropic flow.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2010年第4期1347-1356,共10页 数学物理学报(B辑英文版)
基金 supported by NSFC (10631030) the fund of CCNU for Ph.D Students (2009021)
关键词 Euler-Poisson equations non-isentropic STABILITY Euler-Poisson equations non-isentropic stability
  • 相关文献

参考文献1

二级参考文献10

  • 1Chandrasekhar S. An introduction to the study of stellar structure. Chicago: Univ of Chicago Press, 1938.
  • 2Deng Y -B, Liu T -P, Yang T. Stationary Solutions with Vacuum of Euler-Poisson Equations for Gaseous Stars. Preprint.
  • 3Fowler R H. Further studies of Emden's and similar differential equations. Quart J Math, 1931,2:259-288.
  • 4Gidas B, Ni W -M, Nirenberg L. Symmetry and related properties via the maximum principle. Comm Math Phys, 1979,68:209-243.
  • 5Kwong M K, Li Y. Uniqueness of radial solutions of semilinear elliptic equations. Trans Amer Math Soc,1992,333:339-363.
  • 6Lu W D. Variational Methods in Differential Equations (in Chinese). Chengdu: Sichuan University Press,1995.
  • 7Ledowx P, Welrevein T. Variable stars. Handbuch der Physic, Bd, 51, 1958.
  • 8Ni W -M, Nussbaum R. Uniqueness and nonuniqueness for positive radial solutions of △u + (r, u) = O.Comm Pure Appl Math, 1985,38:67-108.
  • 9Yanagida E. Uniqueness of positive radial solutions of △u + g(r)u + h(r)u^p = 0 in R^N. Arch Rational Mech Anal, 1991,115(3): 257-274.
  • 10Yanagida E. Recent topics in nonlinear partial differential equations: the structure of radial solutions to semilinear elliptic equations (in Japanese). su gaku, 1999,51(3): 276-290.

共引文献2

同被引文献1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部