摘要
Pollutant vertical mixing in stratified waters is a key factor that affects the vertical pollutant distribution in deep thermal-stratified reservoirs. This article presents an experimental study of the vertical mixing in thermal-stratified waters and an analysis of the retarded tracer jet diffusion in the thermocline layer. In the experiment, Reynolds number rapidly decreases from 104 to 10I. The stronger the stratification, the more seriously retarded the mixing will be. Some small tracer blobs may penetrate the thermocline layer into the hypolimnion layer even the main tracer cloud is retarded. According to its appearance, it can remain with salt-fingering, where the blobs are isolated away from the main cloud and mixed with the surround cold water in the hypolimnion layer. Therefore, the vertical distribution of the tracer under the thermocline layer would take larger values than expected. According to measurements, the isolated blob contents are accounted for about 5%-20% of the main tracer cloud, and are decreased with the increase of the stratification intensity. Results also show that the stronger the stratification, the smaller finger width would be. The averaged width of the incipient fingers is proportional to -0.3272 of the thermal Rayleigh number, Rat, in the turbulent jet fluid. power of the temperature gradient, AT/Az, or - 0.2823 power
Pollutant vertical mixing in stratified waters is a key factor that affects the vertical pollutant distribution in deep thermal-stratified reservoirs. This article presents an experimental study of the vertical mixing in thermal-stratified waters and an analysis of the retarded tracer jet diffusion in the thermocline layer. In the experiment, Reynolds number rapidly decreases from 104 to 10I. The stronger the stratification, the more seriously retarded the mixing will be. Some small tracer blobs may penetrate the thermocline layer into the hypolimnion layer even the main tracer cloud is retarded. According to its appearance, it can remain with salt-fingering, where the blobs are isolated away from the main cloud and mixed with the surround cold water in the hypolimnion layer. Therefore, the vertical distribution of the tracer under the thermocline layer would take larger values than expected. According to measurements, the isolated blob contents are accounted for about 5%-20% of the main tracer cloud, and are decreased with the increase of the stratification intensity. Results also show that the stronger the stratification, the smaller finger width would be. The averaged width of the incipient fingers is proportional to -0.3272 of the thermal Rayleigh number, Rat, in the turbulent jet fluid. power of the temperature gradient, AT/Az, or - 0.2823 power
基金
supported by the National Natural Science Foundation of China(Grant No.50679049)