期刊文献+

高精度曲面模型解算改进的Gauss-Seidel法 被引量:2

New method for solving high accuracy surface modeling
原文传递
导出
摘要 为了降低HASM的时间复杂度,采用一种改进Gauss-Seidel(GS)算法(MGS)解算HASM方程组。首先,从理论上分析了MGS算法收敛速度快于GS算法,然后以高斯合成曲面作为研究对象,用四组模拟试验表明,相同的网格数、达到相同的计算精度,MGS算法计算时间小于GS算法,且两种算法时间差与模拟区域网格数呈二次线性相关;固定网格数,使用相同的内迭代或者外迭代次数,MGS算法精度高于GS算法,但增加内迭代或者外迭代次数,GS算法同样收敛;MGS算法计算时间与网格数呈线性相关。MGS算法能够有效解决HASM模拟大区域的计算时间瓶颈,提高HASM运算速度。以甘肃省董志塬某测区SRTM3作为研究对象,基于MGS的HASM用于模拟DEM表明,HASM精度要高于传统的插值方法。 High accuracy surface modelling(HASM) constructed based on the fundamental theorem of surface is more accurate than the classical methods,but the computational speed of HASM is proportional to the third power of the total number of grid cells in the computational domain.In order to decrease the computational cost and improve the accuracy of HASM,this paper employed a modified Gauss-Seidel(MGS) to solve HASM.The fact that MGS is more accurate and faster than GS is proved in terms of theorem.Gauss synthetic surface was employed to comparatively analyze the simulation errors and the computing time of MGS and GS.The numerical tests showed that under the same simulation accuracy,MGS is faster than GS,and the time difference between MGS and GS is approximately proportional to the second power of the total number of grid cells.Under the same outer or inner iterative cycles,MGS is more accurate than GS.The computing time of MGS is proportional to the first power of the total number of grid cells.Compared with the direct methods for solving HASM,MGS greatly shortens the computing time of HASM.SRTM3(36°—37°N,107°—108°E) of Dongzhi tableland located in Gansu province was employed as a real word example to validate the accuracy of HASM based on MGS.In the example,about 50% of SRTM3 was used as validation points,the others for DEM simulation.The results indicated that RMSE of HASM based on MGS is about 2.4,1.8,1.3,2.7 times less than those of KRIGING,IDW,TIN and NEAREST.
出处 《遥感学报》 EI CSCD 北大核心 2010年第4期742-750,共9页 NATIONAL REMOTE SENSING BULLETIN
基金 国家杰出青年科学基金(编号:40825003) 国家高新技术发展计划(编号:2006AA12Z219) 国家科技支撑计划课题(编号:2006BAC08B) 中国科学院知识创新工程重要方向项目(编号:kzcx2-yw-429)~~
关键词 GS迭代 曲面模拟 精度 试验分析 插值 GS iteration surface simulation accuracy test analysis interpolation
  • 相关文献

参考文献2

二级参考文献13

  • 1游松财,孙朝阳.中国区域SRTM90m数字高程数据空值区域的填补方法比较[J].地理科学进展,2005,24(6):88-92. 被引量:39
  • 2van Zyl J J. The shuttle radar topography mission (SRTM) : a breakthrough in remote sensing of topography [ J ]. Acta AStronautica, 2001, 48 (5 - 12) : 559 - 565.
  • 3Kuuskivi T, et al. Void fill of SRTM elevation data: performance evaluations [ R ]. 2005.
  • 4Grohman G, Kroenung G and Strebeck J. Filling SRTM voids : the delta surface fill method [ J ]. Photogrammetric Engineering and Remote Sensing, 2006, 72 (3) : 213 - 216.
  • 5Reuter H I, Nelson A and Jarvis A. An evaluation of void - filling interpolation methods for SRTM data[ J]. International Journal of Geographical Information Science, 2007, 21 (9): 983 - 1 008.
  • 6Dowding S, Kuuskivi T and Li X. Void fill of SRTM elevation data-principles, processes and performance [ EB/OL].http ://www. intermap, com/images/papers/void_fill_paper_ fall_asprs_2004, pdf, 2004.
  • 7Luedeling E, Siebert S and Buerkert A. Filling the voids in the SRTM elevation model A TIN - based delta surface approach [ J ]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(4): 283-294.
  • 8Wood J D and Fisher P F. Assessing interpolation accuracy in elevation models [ J ]. IEEE Computer Graphics and Applications, 1993, 13(2) : 48 -56.
  • 9YueTX, DuZ Pand SongD J. A new method of surface modelling and its application to DEM construction[ J]. Geomorphology, 2007, 91 ( 1 -2) : 161 - 172.
  • 10Castel T and Oettli P. Sensitivity of the C - band SRTM DEM vertical accuracy to terrain characteristics and spatial resolution[ A]. Headway in Spatial Data Handling: 13th international symposium on spatial data handling[ C]. Verlag Berlin Heidelberg : Springer,2008,163 - 176.

共引文献21

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部