期刊文献+

高光谱遥感图像的空间邻域指数

Spatial local neighborhood index in hyperspectral remote sensing image
原文传递
导出
摘要 通过高光谱遥感图像空间邻域内光谱特征的变化,研究了邻域光谱度量指数;根据邻域内端元光谱特征的变化,提出了邻域独立端元指数提取图像的空间维细节信息。通过真实高光谱遥感图像检验,两类邻域指数能够较好地提取高光谱遥感图像中的细节,为进一步结合空间维、光谱维特征的高精度目标探测与识别创造了有利条件。 Hyperspectral remote sensing image provides not only abundant spectral information but also spatial detailed infor-mation.For making full use of the information,this paper considered the variations of the spectral feature among pixels in local neighborhood and researched on a kind of Local Neighborhood Spectral Similarity Measure Index to extract the spatial detailed information.Furthermore,the spectral feature of endmember in local neighborhood was also considered.And a kind of Local Neighborhood Independent Endmember Index was proposed.In experiments,these local neighborhood indexes demonstrated excellent performance in the real hyperspectral image.Based on these work,it can further improve the capability of hyperspectral target detection and identification by combining with spatial and spectral information.
作者 罗文斐 钟亮
出处 《遥感学报》 EI CSCD 北大核心 2010年第4期751-760,共10页 NATIONAL REMOTE SENSING BULLETIN
基金 国家863项目(编号:2008AA12Z113) 国家973项目(编号:2009CB723902) 国家自然科学基金项目(编号:40901232/D010702 40901225/D010702)~~
关键词 高光谱遥感 光谱相似性度量 端元 邻域指数 hyperspectral remote sensing spectral similarity measure endmember local neighborhood index
  • 相关文献

参考文献12

  • 1Bakker W H and Schmidt K S.2002.Hyperspectral edge filtering for measuring homogeneity of surface cover types.Journal of Photogrammetry & Remote Sensing,2002,56:2,46-256.
  • 2Bourbaki N.1987.Topological Vector Spaces,Chapters 1-5:Elements of Mathematics.Berlin:Springer-Verlag.
  • 3Chang C I.2002.Hyperspectral Imageing Techniques for Spectral Detection and Classification.New York:Kluwer Academic/Plenum Publishers.
  • 4Chang C I.2000.An information theoretic-based approach to spectral variability,similarity and discriminability for hyperspectral image analysis.IEEE Transation on Information Theory,46(5):1927-1932.
  • 5Du Y,Chang C I,Ren H,Amico F D and Jensen J O.2003.A new hyperspectral discrimination measure for spectral similarity.Algorithms and Technologies for Multispectral,Hyperspectral,and Ultraspectral Imagery IX,SPIE Digital Library.
  • 6Gong Y and Bi D.2007.The edge detection of hyperspectral image based on its proportion image.27th International Congress on High-Speed Photography and Photonics.SPIE Digital Library.
  • 7Kanade T and Sharer S.1987.Image understanding research at cmu.Proceedings of an Image Understanding Workshop,Los Angeles,CA:Morgan Kaufmann Publishers.
  • 8Kenneth R C.2002.Digital Image Processing 2ed.Beijing:Publishing House of Electronics Industry.
  • 9Luo W F,Zhong L,Zhang B and Gao L R.2008.An spectral unmixing algorithm for hyperspectral image based on the distance to subspaee.Progress in Natural Science,18(10):1175-1180.
  • 10Schowengerdt R A.2006.Remote Sensing 3ed:Models and Methods for Image Processing.Missouri,USA:Academic Press.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部