期刊文献+

一阶时滞微分方程的周期解 被引量:1

Periodic Solutions for First Order Delay Differential Equations
下载PDF
导出
摘要 使用环绕定理研究一阶时滞微分系统u(′t)=-f(u(t-r))周期解的存在性,其中f∈C(Rn,Rn),r>0.在适当的假设条件下得到一个全新的存在性定理. By the linking theorem, we study the existence of periodic solutions for the following system of delay differential equations u'(t) = -f(u(t -r)) , wheref ∈ C(Rn ,Rn) and r 〉 0 is a given constant. A new result for the existence of 4r- periodic solutions is obtained.
作者 张绍康
出处 《云南师范大学学报(自然科学版)》 2010年第4期14-17,共4页 Journal of Yunnan Normal University:Natural Sciences Edition
基金 昭通师范高等专科学校科学基金资助课题(XJKZ0910)
关键词 环绕 周期解 临界点 Linking Periodic solution Critical point
  • 相关文献

参考文献4

  • 1F. Browder. A further generalization of the Schauder fixed -point theorem[ J]. Duke Math. J., 1965, (32) : 575 -578.
  • 2R. B. Grafton. A periodicity theorem for autonomous functional differential equations [ J ]. J. Differential Equations, 1969, (6) : 87 - 109.
  • 3Z. M. Guo, J. S. Yu. Multiplicity results for periodic solutions to delay differential equations via critical point theory[ J]. J. Differential Equations,2005, (218) : 15 -35.
  • 4P. H. Rabinowitz. Minimax methods in critical point theory with applications to differential equations [ M ], CBMS, Regional Conference Series in Mathematics, vol. 65, AMS, 1986, 36,95.

同被引文献11

  • 1Wu Xian,Chen Shaoxiong,Teng Kaimin.On variationalmethods for a class of damped vibration problems[ J].Nonlinear Anal., 2008,68(6): 1432-1441.
  • 2Berger M, Schechter M.On the solvability of semi -lineargradient operator equations[J]. Adv. Math., 1977,25 ( 2 ):97-132.
  • 3Mawhin J,Willem M.Critical Point Theory and HamiltonianSystems [M].Springer-Verlag:Berlin/ New York, 1989.
  • 4Mawhin J.Semi-coercive monotone variational problems [j].Acad. Roy. Belg. Bull. Cl. Sci., 1987,73(5): 118-130.
  • 5Ma Jian,Tang Chunlei.Periodic solutions for some non -2002,275(2),482-492.
  • 6Tang Chunlei-Eriodic solutions of non -autonomous secondorder systems with -quasisub-additive potential[J]. J. Math.Anal. Appl., 1995(189):671-675.
  • 7Tang Chunlei.Periodic solutions of non-autonomous secondorder systems[J]. J. Math. Anal AppL, 1996(202) : 465-469.
  • 8Tang Chunlei.Periodic solutions for non-autonomous secondorder systems with sublinear nonlinearity[J]. Proc. Amer.Math. Soc., 1998( 126) :3263-3270.
  • 9Tang Chunlei,Wu Xingping.Periodic solutions for secondorder systems with not uniformly coercive potential[J],J.Math. Anal. Appl., 2001 (259) : 386-397.
  • 10Wu Xingping,Tang Chunlei.Periodic solutions of a classof non-autonomous second order systems[J]. J. Math. Anal.Appl., 1999(236):227-235.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部