期刊文献+

基于MPSO算法的RBF网络学习算法 被引量:1

RBF Neural Network Learning Algorithm Based on Modified Particle Swarm Optimization
下载PDF
导出
摘要 针对标准粒子群优化(PSO)算法存在早熟收敛,易陷入局部极值的缺陷,提出了一种利用混沌优化算法确定PSO算法参数的改进粒子群优化(MPSO)算法。为了提高径向基函数(RBF)神经网络的精度和性能,提出了一种基于改进粒子群优化(MPSO)算法的RBF网络学习算法。RBF网络隐层节点个数用对手受罚的竞争学习(RPCL)算法确定后,基函数的中心矢量、方差和网络权值用MPSO算法在全局空间动态确定。采用Iris分类问题做仿真实验,并与基于标准PSO算法的方法和单纯BP网络训练进行比较。实验结果表明,该算法性能优于所比较的2种算法,并且具有良好的收敛性和模式分类能力。 Coping with the defects of prematurity and easily getting into the local optimization in the standard particle swarm optimization(PSO),a modified particle swarm optimization(MPSO) algorithm is proposed,in which the chaos optimization algorithm is introduced to optimize parameters.In order to improve the precision and performance of radial basis function(RBF) neural network,A RBF neural network learning algorithm based on MPSO is proposed.After determination of the number of units in RBF hidden layer by using the rival penalized competitive learning(RPCL) algorithm,centers,widths of basis functions and weights of neural network are estimated dynamically in global space with MPSO.The Iris classification problem was introduced to do the simulation experiment,and compared with the standard PSO algorithm and BP algorithm.The experimental results show that,the performance of the proposed algorithm is superior to the other two algorithms with a better convergence and pattern recognition.
作者 姚柳
出处 《煤炭技术》 CAS 北大核心 2010年第7期204-206,共3页 Coal Technology
关键词 粒子群优化(PSO)算法 改进粒子群优化(MPSO)算法 径向基函数(RBF)神经网络 混沌优化算法 对手受罚的竞争学习(RPCL)算法 particle swarm optimization modified particle swarm optimization radial basis function neural network chaos optimization algorithm rival penalized competitive learning algorithm
  • 相关文献

参考文献7

二级参考文献18

  • 1商琳,王金根,姚望舒,陈世福.一种基于多进化神经网络的分类方法[J].软件学报,2005,16(9):1577-1583. 被引量:13
  • 2范睿,李国斌,景韶光.基于实数编码遗传算法的混合神经网络算法[J].计算机仿真,2006,23(1):161-164. 被引量:26
  • 3MehmedKantardzic著 闪四清 译.数据挖掘-----概念,模型,方法,和算法[M].北京:清华大学出版社,2004..
  • 4Chen L,中日青年国际学术讨论会论文集,1995年
  • 5卢侃,混沌动力学,1990年
  • 6Huang D S. Radial basis probabilistic neural networks:Model and application [J]. International Journal of Pattern Recognition and Artificial Intelligence, 1999, 13 ( 7 ):1083-1101
  • 7Lowe D. Adaptive radial basis function nonlinearities and the problem of generalization[A]. London: In proceeding of First International Conference on Artifcial Neural Networks,1989, 171-175
  • 8Specht D E. Probabilistic neural networks [J]. Neural Networks, 1990, 109-118
  • 9Zhou Z H, Chen S F, Chen Z Q. A Fast Adaptive Neural Network Classifier[ J]. FANNC: Knowledge and Information Systems, 2000, 115-129
  • 10Zhao W B, Huang D S. The structure optimization of radial basis probabilistic neural networks based on genetic algorithms [ A ]. Hawaii: In proceeding of International Joint conference on Neural Networks 2002, 1086-1091

共引文献578

同被引文献8

  • 1N. Bhat and W. -J. Kim, "System identification and control of ionic polymer metal composite," in Proceedings of SPIE, Smart Structures and Materials, 2003, 5049: 526-535.
  • 2K.K. Ahn, and H.P.H. Anh, "A New Approach of Modeling Identification and Hybrid Feed-Forward-PID Control of The Pneumatic Artificial Muscle (PAM) Robot Arm using Inverse NARX Fuzzy Model and Genetic Algorithm," submitted to International Journal of Engineering Applications of Artificial Intelligence, Proceedings of the EAAI, (In revision) 2009.
  • 3Z.L. Gaing: A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System, IEEE Trans. Energy Conversion, 2004, 19(2): 384-391.
  • 4J. Kennedy, R. Eberhart: Particle Swarm Optimization, Proc. IEEE Int. Conf. on Neural Network, 1995, 4: 1942-1948.
  • 5N. Bhat and W. -J. Kim, "Precision force and position control of ionic polymer metal composite," Journal of Systems and Control Engineering, 2004, 218(6): 421-432.
  • 6李明,李会莹,杨汉生,杨成梧.基于一种新型动态神经网络的非线性自适应逆控制[J].系统仿真学报,2007,19(17):4021-4024. 被引量:5
  • 7易伯瑜,贺庚贤.基于NARX网络的无刷直流电机自适应逆控制[J].计算机仿真,2009,26(4):331-334. 被引量:3
  • 8白珍龙,耿继宏.分数阶模型参考自适应控制在重碱煅烧中的应用[J].化工自动化及仪表,2009,36(2):33-37. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部