期刊文献+

求解一类HJB方程的非线性SOR迭代法 被引量:2

A Nonlinear SOR Iterative Method for a Kind of HJB Equation
下载PDF
导出
摘要 采用非线性SOR迭代法求解一类特殊的Hamilton-Jacobi-Bellman(HJB)方程,该迭代法可以看成为求解线性方程组的SOR迭代法在求解HJB方程上的推广.在一定条件下此方法具有单调收敛性. A nonlinear SOR iteration method was used to solve a kind of HJB equation.The method is an extension of SOR iteration method from linear problem to HJB equation.Under proper conditions,it has some good monotone convergences.
作者 孙哲 吴磊
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第7期86-88,共3页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(10971058)
关键词 非线性方程 M-函数 单调收敛 nonlinear equations M-function monotone convergence
  • 相关文献

参考文献8

  • 1HOPPE R H W.Multigrid methods for Hamilton-Jacobi-Bell-man equations[J].Numerische Mathematik,1986,49:239-254.
  • 2HUANG C S,WANG S,TEO K S.On application of an alternating direction method to HJB equations[J].Journal of Computational and Applied Mathematics,2004,166:153-166.
  • 3LIONS P L,MERCIER B.Approximation numerique des equations de Hamilton-Jacobi-Bellman[J].RAIRO Numerical Analysis,1980,14:369-393.
  • 4SUN M.Domain decomposition method for solving HJB equations[J].Numerical Functional Analysis and Optimization,1993,14:145-166.
  • 5ZHOU S Z.ZOU Z Y.A new iterative method for discrete HJB equations[J].Numerische Mathematik,2008,111:159-167.
  • 6ZHOU S Z,ZOU Z Y.A relaxation scheme for Hamilton-Jacobi-Bellman equations[J].Applied Mathematics and Computation,2007,186:806-813.
  • 7周叔子,陈光华.解离散HJB方程的一个单调迭代法[J].应用数学,2005,18(4):639-643. 被引量:11
  • 8MORE J J,RHEINBOLDT W C.On p-and S-functions and related class of n-dimensional nonlinear mappings[J].Linear Algebra and Its Applications,1973,6:45-68.

二级参考文献7

  • 1Crandall M G,Ishi H,Lions P L. User's guide to viscous solution[J]. Bull. AMS. ,1992,27(1) :1-67.
  • 2Hoppe R H W. Multigrid methods for HJB equation[J]. Numer. Math. ,1986,49(2):239-254.
  • 3Sun M. Domain decomposition method for solving HJB equations[J]. Numer. Funct. Anal. Optim. , 1992,14(2) :145-166.
  • 4Sun M. Alternative direction algorithms for solving HJB equation[J ]. Appl. Math. Optim. , 1996,34 (3) :267-277.
  • 5Zhou S Z,Zhan W P. A new domain decomposition method for a HJB equaiton[J]. J. Comp. Appl. Math. ,2003,159(2) : 195 -204.
  • 6Young D. Iterative Solution of Large Linear System[M]. New York:AP, 1971.
  • 7Bellman R. Adaptive Control Processes[M]. New Jersey: Princeton University Press, 19 61.

共引文献10

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部