期刊文献+

FeCl_3/PVP胶体催化水合肼还原硝基苯 被引量:1

Reduction of Nitrobenzene with Hydrazine Hydrate over FeCl_3/PVP Colloidal Catalyst
下载PDF
导出
摘要 以聚乙烯吡咯烷酮(PVP)为保护剂,采用水热合成法制备了FeCl3/PVP胶体催化剂,通过XRD和TEM方法对催化剂的形貌与结构进行了表征;考察了催化剂的制备条件(水热时间、PVP与FeCl3的摩尔比)和反应条件(反应温度、水合肼用量和催化剂用量)对还原反应的影响。实验结果表明,在PVP与FeCl3摩尔比1∶40、100℃下水热2h制得的胶体稳定性好、分散度高,其胶粒呈70~90nm的棒状结构。该胶体催化剂在催化水合肼还原硝基苯的反应中表现出很高的催化活性,在反应温度80℃、反应时间80min、硝基苯用量4.89mmol、无水乙醇用量5mL、FeCl3/PVP胶体催化剂用量2.0mL(nFe=0.150 0mmol)、n(水合肼)∶n(硝基苯)=2.5的条件下,苯胺收率可达100%。 FeCl3/polyvinylpyrrolidone (PVP) colloidal catalysts were prepared through a hydrothermal process with PVP as protective agent and used in reduction of nitrobenzene with hydrazine hydrate to aniline. Structures and morphologies of the FeCl3/PVP colloidal catalysts were characterized by means of XRD and TEM. Effects of the hydrothermal time and the PVP dosage on performance of the FeCl3/PVP colloidal catalysts in the reduction were investigated. The effects of reaction temperature, catalyst dosage and hydrazine hydrate dosage on aniline yield were studied. The high-stable, high-dispersive and club-shaped FeCla/PVP colloidal catalyst with a size of 70 - 90 nm was prepared under hydrothermal treatment conditions of n (PVP) : n ( FeCl3 ) 1 : 40, temperature 100℃ and time 2 h. Under the optimal reaction conditions: reaction temperature 80℃, reaction time 80 min, nitrobenzene dosage 4.89 mmol, absolute alcohol dosage 5 mL, FeCl3/PVP colloidal catalyst dosage 2.0 mL (nFe 0. 150 0 mmol) and n(hydrazine hydrate) : n(nitrobenzene) 2.5, yield of aniline could reach 100%.
出处 《石油化工》 CAS CSCD 北大核心 2010年第7期789-793,共5页 Petrochemical Technology
基金 辽宁省自然科学基金资助项目(20072154) 辽宁省高校创新团队资助项目(2008T106)
关键词 聚乙烯吡咯烷酮 胶体催化剂 水热合成 水合肼 硝基苯 苯胺 polyvinylpyrrolidone colloidal catalyst hydrothermal process hydrazine hydrate nitrobenzene aniline
  • 相关文献

参考文献16

  • 1Lauwiner M, Rys P, Wissmann J. Reduction of Aromatic Nitro Compounds with Hydrazine Hydrate in the Presence of an Iron Oxide Hydroxide Catalyst, I. The Reduction of Monosubstituted Nitrobenzenes with Hydrazine Hydrate in the Presence of Ferrihydrite. Appl Catal, A, 1998, 172(1) : 141 -148.
  • 2左东华,张志琨,崔作林,董立峰.纳米镍稀土薄壳式粒子在硝基苯加氢中的催化性能[J].催化学报,1996,17(2):166-169. 被引量:19
  • 3Heropoulos G A, Georgakopoulos S, Steele B R. High Intensity Ultrasound-Assisted Reduction of Sterically Demanding Nitroaromatics. Tetrahedron Lett, 2005, 46(14) :2 469 -2 473.
  • 4房永彬,严新焕,孙军庆,徐振元,王文静.碳纳米管负载Pt-Sn-B非晶态催化剂催化氯代硝基苯液相加氢反应的性能[J].催化学报,2005,26(3):233-237. 被引量:32
  • 5张竹霞,吕荣文,张珂珂,高昆玉.水合肼还原芳硝基物的研究[J].精细化工,2001,18(4):239-242. 被引量:54
  • 6Lauwiner M, Roth R, Rys P. Reduction of Aromatic Nitro Compounds with Hydrazine Hydrate in the Presence of an Iron Oxide/ Hydroxide Catalyst. m. The Selective Reduction of Nitro Groups in Aromatic Azo Compounds. Appl Catal, A, 1999, 177(1) : 9 - 14.
  • 7Benz M, Prins R. Kinetics of the Reduction of Aromatic Nitro Compounds with Hydrazine Hydrate in the Presence of an Iron Oxide Hydroxide Catalyst. Appl Catal, A, 1999, 183(2) : 325 -333.
  • 8Shakhnes A K, Vorobev S S, Shevelev S A. Selective Reduction of One, Two, or Three Nitro Groups in 1,3,5-Trinitrobenzene with Hydrazine Hydrate. Russ Chem Bull, 2006, 55 ( 5 ) : 938 - 939.
  • 9Shevelev S A, Shakhnes A K, Ugrak B I, et al. High Selective One- Step Synthesis of 2-Amino-4,6-Dinitrotoluene and 2, 6-Diamino-4- Nitro-Toluene from 2,4, 6-Trinitrotoluene. Synth Commun, 2001, 31(17) : 2 557 -2 561.
  • 10Pramod S K, laime S V, Jean M M, et al. Mg-Fe Hydrotalcite as a Catalyst for the Reduction of Aromatic Nitro Compounds with Hydrazine Hydrate. J Catal, 2000, 191(2) : 467 -473.

二级参考文献38

  • 1王寰,张雪军,张明慧,李伟,牟诗诚,陶克毅.以Β-环糊精为介质的高分散钯催化剂的制备及其催化性能[J].催化学报,2006,27(2):124-128. 被引量:4
  • 2李浙齐,姜文凤,王慧龙.α-呋喃甲酸在Ru-Pd/γ-Al_2O_3催化剂上加氢甲酯化[J].石油化工,2007,36(4):366-369. 被引量:2
  • 3Hamda M, Abe D, Kimura Y J. Synthesis of Colloidal Dispersions of Rhodium Nanoparticles Under High Temperatures and High laressures. J Colloid Interface Sci, 2005, 292( 1 ) : 113 - 121.
  • 4Li Yin, Boone E, Mostafa A, et al. Size Effects of PVP-Pd Nanoparticles on the Catalytic Suzuki Reactions in Aqueous Solution. Langmuir, 2002, 18(12) : 4 921 -4 925.
  • 5Beck A, Horvath A, Szucs A, et al. Pd Nanoparticles Prepared by "Controlled Colloidal Synthesis" in Solid/Liquid Interracial Layer on Silica I . Particle Size Regulation by Reduction Time. Catal Lett, 2000, 65(3) : 33 -42.
  • 6Benkhaled M, Morin S, Pichon C H, et al. Synthesis of Highly Dispersed Palladium Alumina Supported Particles: Influence of the Particle Surface Density on Physico-Chemical Properties. Appl Catal, A, 2006, 312(8): 1 -11.
  • 7Choo H P, Liew K Y, Liu Hanfan, et al. Activity and Selectivity of Noble Metal Colloids for the Hydrogenation of Polyunsaturated Soybean Oil. J Mol Catal A:Chem, 2003, 191( 1 ) :113 - 121.
  • 8Jiang Xiaowei, Wei Guanwei, Zhang Wangqing, et al. A Strategy to Facilitate Reuse of Palladium Catalyst Stabilized by Block Copolymer Micelles. J Mol Catal A : Chem, 2007, 277( 1 ) : 102 - 106.
  • 9Hirai H, Chawanya H, Toshima N. Colloidal Palladium Protected with Poly (N-Vinyl-2-Pyrrolidone) for Selective Hydrogenation of Cyclopentadiene. React Funct Polym, 1985,3(2) : 127 - 141.
  • 10Brigs D, Seah M P. Practical Surface Analysis. Chichester: Wiley, 1990.31 - 84.

共引文献107

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部