期刊文献+

贝叶斯网络VE推理算法的并行化研究 被引量:1

Research of parallel VE inference algorithm in Bayesian network
原文传递
导出
摘要 贝叶斯网络是一种强有力的不确定性推理和数据分析工具.网络推理是贝叶斯网络的重要内容之一.VE算法是利用联合分布的分解来简化推理的贝叶斯网推理算法.提出一种基于最小缺边搜索算法的消元顺序(PL_OE)算法,使VE算法可并行执行,降低了贝叶斯网推理的时间复杂性. Bayesian network is a powerful tool used to uncertain inference and data analysis.The network inference is an important content of Bayesian network.The variable-elimination (VE) algorithm is used to simplify Bayesian network inference algorithm with the decomposition of the joint distribution.This paper proposed an elimination ordering algorithm based on the maximum deficiency search algorithm,making VE algorithm execute in parallel,reducing the time complexity of the Bayesian network inference.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期392-395,399,共5页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金项目资助(60763007)
关键词 贝叶斯网络 变量消元(VE)算法 最小缺边搜索(MDS)算法 Bayesian network variable elimination (VE) algorithm minimum deficiency search (MDS) algorithm
  • 相关文献

参考文献9

  • 1GHAHRAMANI Z. An introduction to hidden markov models and bayesian networks [ J ]. International Journal of Pattern Recognition and Artificial Intelligence,2001, 15 ( 1 ) :9-42.
  • 2CHARLES E, KAHN jr, ROBERTS L M, et al. Construction of a baye - sian network for mammographic diagnosis of breast cancer[ J]. Computers of Biology and Medicine, 1997,27 ( 1 ) : 19-29.
  • 3HECKERMAN D. Bayesian networks for data mining [J]. Data Mining and Knowledge Discovery, 1997, 1 ( 1 ) :79-119.
  • 4CHAVIRA M, DARWICHE A. Compiling bayesian net - works using variable elimination [ C ]//proceedings of the 20th international joint conference on arti - ficial intelligence, 2007. Hyderabad : Morgan Kaufmann Pub- lishers Inc ,2007:2 443-2 449.
  • 5BERRY A, bLAIR J, HEGGERNES P, et al. Maximum cardinality search for computing minimal triangulations of graphs [ J ]. Algorithmica,2004,39 (4) :287-298.
  • 6HELL P, KIRKPATRICK D G. Algorithms for degree constrained graph factors of minimum deficiency [ J ]. Journal of Algorithms, 1993,14 ( 1 ) : 115-138.
  • 7COOPER G F. Computational complexity of probability inference using Bayesian Belief Networks [ J ]. Artificial Intelligence, 1993,15 : 246-255.
  • 8GROPP W, LUSK E, SKJELLUM A. Using MPI : portable parallel programming with the message -passing interface [ M ]. Cambridge, USA : MIT Press, 1999.
  • 9Norsys Software Corp. Netica [ DB/OL]. [2010- 2- 25 ]. http ://www. norsys, com.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部