期刊文献+

模糊模式识别技术在超声表征铝质高压绝缘子中的应用 被引量:1

APPLICATION OF FUZZY PATTERN RECOGNITION TO HIGH VOLTAGE ALUMINOUS INSULATOR IN ULTRASONIC CHARACTERIZATION
下载PDF
导出
摘要 本文提出一种基于模糊模式识别技术对不同烧成温度的高压铝质绝缘子进行超声表征的方法。通过超声水浸线聚焦技术获得烧成温度分别为1220℃、1260℃和1300℃的绝缘子的回波信号,并提取归一化功率谱中0.58MHz、1.282MHz和1.495MHz三个频率的幅值作为表征绝缘子组织结构的特征值。由于对应不同烧成温度,该特征值围绕其平均值波动,此时可认为该烧成温度对应组织结构的超声回波功率谱特征值形成了一个模糊集,利用模糊识别中能够表征模糊集之间彼此接近程度的贴近度概念来进行研究。结果表明,利用待测试样与标准试样功率谱特征值之间的贴近度,可以有效区分不同烧成温度的绝缘子,贴近度越大,待测试样与标准试样的烧成温度越接近。该方法为无损表征不同组织结构的绝缘子提供了有效途径。 Ultrasonic characterization method of high voltage aluminous insulator with various sintering temperature is developed based on fuzzy pattern recognition.The immersed line focus pulse-echo technique is applied to obtain echo signals of insulator with various sintering temperature.The power spectrum amplitude of characteristic frequency was chosen to evaluate the microstructure of insulator.For the insulator with sintering temperatures of 1220 ℃,1260 ℃ and 1300 ℃,the characteristic frequencies are 0.58MHz、1.282MHz and 1.495MHz.Corresponding to different temperatures,the amplitudes fluctuate around their average values,thus it is difficult to recognize the microstructure of insulator with various sintering temperature accurately.The amplitudes were considered as a fuzzy set,and closeness degree of fuzzy pattern recognition was used to evaluate the approaching degree among the fuzzy sets.Greater closeness degree corresponds to closer sintering temperature between the reference samples and the analysis samples.This method provides an effective approach for the evaluating of insulator microstructure.
出处 《中国陶瓷》 CAS CSCD 北大核心 2010年第7期63-66,共4页 China Ceramics
关键词 铝质高压绝缘子 烧成温度 超声表征 模糊模式识别 贴近度 High voltage aluminous insulator Sintering temperature Ultrasonic characterization Fuzzy pattern recognition Closeness degree
  • 相关文献

参考文献14

二级参考文献20

共引文献42

同被引文献16

  • 1李建文,徐彦霖,王增勇.应用模式识别技术识别超声检测的缺陷类型[J].仪器仪表学报,2004,25(z1):585-586. 被引量:3
  • 2弓乐,曹康,吴淼.金属材料超声探伤缺陷分类辅助系统的研究[J].仪器仪表学报,2005,26(10):1085-1088. 被引量:7
  • 3HAUSER J J, WELLS M G I-I. Ultrasonic assessment of inclusions in steel billets[ J]. Metals Technology, 1974, 1(1) :86-93.
  • 4SMITH J M. Ultrasonic steel cleanliness system[ J]. Re- view of Progress in Quantitative Nondestructive Evalua- tion, 1983 : 1431-1436.
  • 5PANDEY J C, RAJ M, ROY T K, et al. A novel method to measure cleanliness in steel using ultrasonic c-scan im- age analysis [ J]. Metallurgical and Materials Transactions B, 2008 ,39 ( 3 ) :439- 446.
  • 6KESHARAJU M, NAGARAJAIq R. Feature selection for neural network based defect classification of ceramic com- ponents using high frequency ultrasound [ J ]. Ultrason- ics, 2015,62:271-277.
  • 7KESHARAJU M, NAGARAJAH R, ZHANG T, et al. Ultrasonic sensor based defect detection and characterisa- tion of ceramics [ J ]. Ultrasonics, 2014, 54 ( 1 ) : 312-317.
  • 8KESHARAJU M, NAGARAJAH R. Feature selection forneural network based defect classification of ceramic components using high frequency ultrasound [ J ]. Ultra- sonics, 2015, 62:271-277.
  • 9HOSSEINABADI H Z, AMIRFATTAHI R, NAZARI B, et al. GUW-based structural damage detection using WPT statistical features and multiclass SVM [ J ]. Applied Acoustics, 2014,86:59-70.
  • 10HAMDI E, LAFHAJ Z. Microcracking based rock classi- fication using ultrasonic and porosity parameters and mul- tivariate analysis methods [ J ]. Engineering Geology, 2013,167:27-36.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部