期刊文献+

权证收益率波动的度量:基于GARCH和SV模型的比较 被引量:2

Measuring Effect of Warrant Return Volatility:A Comparative Study Based on GARCH and SV Model
原文传递
导出
摘要 分别采用GARCH模型和SV模型对权证收益率波动进行比较研究,发现这两类模型均能较好地拟合权证收益率的波动,但SV模型比GARCH模型更能捕捉权证收益率的波动信息。在权证总持续期间,通过SV模型计算的V aR值比GARCH模型更加准确;而在权证发行上市时期及最后交易日期间,通过GARCH模型计算的V aR值比SV模型更加准确。 In this paper,GARCH model and SV model are utilized to explore the volatility characteristics of warrants return comparatively,the results demonstrate that both GARCH and SV model can well describe the volatility of warrant return,but SV is better than GARCH in capturing volatility information of warrant return.The study also finds that in the total duration of the warrants,VaR calculated by SV model is more accurate than GARCH model;but in the beginning of issuing period and the expiration period,VaR calculated by GARCH model is superior to SV model.
出处 《系统工程》 CSSCI CSCD 北大核心 2010年第4期1-8,共8页 Systems Engineering
基金 国家社会科学基金重点资助项目(07AJL005) 教育部博士点专项科研基金资助项目(20070532091) 教育部人文社会科学规划项目(09YJC630063)
关键词 权证 收益率波动 GARCH模型 SV模型 Warrant Return Volatility GARCH Model SV Model
  • 相关文献

参考文献15

  • 1Engle R E. Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation[J]. Econometrica, 1982,50 (4) : 987-1008.
  • 2Bollerslev T. Generalized autoregressive conditional heteroskedasticity [J]. Journal of Econometrics, 1986,31 (3) : 307-327.
  • 3Taylor S J. Modeling financial time series[M]. New York : Wiley, 1986.
  • 4Harvey A, Ruiz E, Shephard N. Multivariate stochastic variance models[J]. Review of economic studies,1994,61 (2) :247-264.
  • 5Kim S, et al. Stochastic volatility: likelihood inference and comparison with ARCH models[J]. Review of Economic Studies, 1998,65 (3) : 361-393.
  • 6Lehar A, et al. GARCH vs. stochastic volatility.. option pricing and risk management [J]. Journal of Banking & Finance, 2002,26 (2 - 3) : 323 -345.
  • 7Chuang I Y, Lu .iT R, Lee P H. Forecasting volatility in the financial markets: a comparison of alternative distributional assumptions [J]. Applied Financial Economics, 2007,17(13) : 1051- 1060.
  • 8Evans T, McMillan D G. Volatility foreeasts:the role of asymmetric and long-memory dynamics and regional evidence[J]. Applied Financial Economics, 2007,17 (17) : 1421-1430.
  • 9占超,潘宣辰.基于GARCH模型的认购权证与认沽权证波动率比较研究[J].技术经济与管理研究,2008(3):92-95. 被引量:3
  • 10Jizba P, Kleinert H, Haener P. Perturbation expansion for option pricing with stochastic volatility[J]. Physiea A: Statistical Mechanics and Its Applications, 2009,388 (1) : 3503 - 3520.

二级参考文献27

  • 1郭晓亭.基于GARCH模型的中国证券投资基金市场风险实证研究[J].国际金融研究,2005(10):55-59. 被引量:19
  • 2[1]Duffie,D.,Dynamic Asset Pricing Theory,Princeton University Press,1992.
  • 3[2]Takeaki Kariya,Quantitative Methods for Portfolio Analysis},MTV model approach,Kluwer Academic Publishers,1993.
  • 4[3]Engel,R.F.,Autoregressive conditional hetereskedasticity with estimates of variance of U.K.inflation,Econometrica,50(1982),987-1007.
  • 5[4]Bollerslev,T.and Kroner,K.F,ARCH modeling in finance,a review of the theory and empirical evidence,Journal of Econometrics,52(1992),5-59.
  • 6[5]Risk Metrics TM-Technical Document,3rd edition,JP Morgan Guaranty Trust Company,1995.
  • 7[6]Harvey,A.and Ruiz,E.,Multivariate stochastic variance models,Review of Economic Studies,61(1994),247-264.
  • 8[7]Daniel Graupe,Time Series Analysis,Indentification and Adaptive Filtering,2nd edition,Robert.E.Kreiger Publishing Co.Inc.,1989.
  • 9[8]Bollerslev,T.and Wooldridge,M.,Quasi-maximum likelihood estimation and inference in dynamic models with time-varyiny covariance,Econometric Review,11(2)(1992),143-172.
  • 10[9]Box,G.E.P. and Jenkins,G.M.,Time Series Analysis,Forecasting and Control,Holder-Day,1976.

共引文献2

同被引文献37

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部