期刊文献+

基于粒子滤波与改进水平集的人手跟踪 被引量:2

Hand Tracking Based on Particle Filter and Improved Level Set
下载PDF
导出
摘要 提出一种基于肤色信息的改进水平集分割算法,给出整个算法的推导和实现过程,实现复杂背景下的精确人手轮廓分割,在进行人手跟踪时,使用粒子滤波对手的位置和大小进行跟踪,并用跟踪结果初始化水平集函数,以此加快轮廓曲线的收敛速度,获得手的轮廓后,对指尖位置进行定位。实验结果表明,该算法能够在复杂背景下实时、准确地跟踪人手轮廓和指尖位置。 This paper proposes an improved level set segmentation algorithm based on skin color feature to implement accurate hand contour segmentation from clutter background.It introduces the deduction and implementation of the proposed total algorithm.When applying the improved algorithm to hand tracking,the location and size of hand obtained by particle filter is taken to initial the level set function,which can speed up the convergence speed of curve iteration.The extracting contour is used to locate fingertips.Experimental result shows that the algorithm can track accurate hand contour and fingertips from clutter background in real-time.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第13期159-161,共3页 Computer Engineering
基金 国家科技支撑计划基金资助项目(2006BAK13B10) 上海市重点学科建设基金资助项目(J50103)
关键词 人手跟踪 粒子滤波 水平集 肤色 hand tracking particle filter level set skin color
  • 相关文献

参考文献7

  • 1刘棠丽,吴心筱,梁玮,贾云得.基于非参数信念传播的可行C-空间关节人手跟踪方法[J].计算机辅助设计与图形学学报,2008,20(4):476-481. 被引量:13
  • 2Zhuang A H,Valentino D J,Toga A W.Skull-stripping Magnetic Resonance Brain Images Using a Model-based Level set[J].NeuroImage,2006,32(1):79-92.
  • 3朱峰,宋余庆,朱玉全,郭依正.基于梯度的混合Mumford-Shah模型医学图像分割[J].计算机工程,2007,33(24):200-202. 被引量:13
  • 4Cremers D.Nonlinear Dynamical Shape Priors for Level Set Segmentation[J].Journal of Scientific Computing,2008,35(2):132-143.
  • 5杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 6Chan T,Vese L.Active Contours Without Edges[J].IEEE Trans.on Image Processing,2001,10(2):266-277.
  • 7Li Chunming,Xu Chenyang,Gui Changfeng.Level Set Evolution Without Reinitialization:A New Variational Formulation[C] //Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.San Diego,CA,USA:IEEE Press,2005:430-436.

二级参考文献96

  • 1JAZWINSKI A H. Stochastic Processes and Filtering Theory[M]. New York: Academic Press, 1970.
  • 2ANDERSON B D, MOORE J B. Optimal Filtering [ M]. New Jersey: Prentice-Hall, 1979.
  • 3BLOM H A P, BAR-SHALOM Y. The interacting multiple model algorithm for systems with Markovian switching coefficients [ J]. IEEE Trans on Automatic Control, 1988, 33 (8) :103 - 123.
  • 4BUCY R S, SENNE K D. Digital synthesis of nonlinear filters [ J ]. Automatica, 1971 , 7 ( 3 ) :287 - 298.
  • 5HAMMERSLEY J M, MORTON K W. Poor man's Monte Carlo [J]. J of the Royal Statistical Society B, 1954, 16( 1 ) :23 -38,
  • 6HANDSCHIN J E, MAYNE D Q. Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering [J].Int J Control, 1969, 9(5): 547-559.
  • 7ZARITSKII V S, SVETNIK V B, SHIMELEVICH L I. Monte-Carlo techniques in problems of optimal information processing [J]. Automation and Remote Control, 1975, 36 (3) :2015 -2022.
  • 8GORDON N J, SALMOND D J, SMITH A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proceedings-F, 1993, 140(2) :107 - 113.
  • 9LIU J S, CHEN R. Sequential Monte Carlo methods for dynamic systems [ J ]. J of the American Statistical Association,1998, 93(443) :1032 -1044.
  • 10DOUCET A, GODSILL S, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Computing, 2000, 10( 1 ) :197 -208.

共引文献97

同被引文献6

  • 1刘寅,滕晓龙,刘重庆.复杂背景下基于傅立叶描述子的手势识别[J].计算机仿真,2005,22(12):158-161. 被引量:30
  • 2Horn B K R Schunck B G. Determining Optical Flow[J]. Artificial Intelligence, 1981, 17(1): 185-203.
  • 3Zhang Bo, Tian Weifeng, Jin Zhihua. Head Tracking Based on the Integration of Two Different Particle Filters[J]. Measurement Science and Technology, 2006, 17(11): 2877-2883.
  • 4Adam A, Rivlin E, Shimshoni I. Robust Fragments-based TrackingUsing the Integral Histogram[C]//Proc. of IEEE Conference onComputer Vision and Pattern Recognition. New York, USA: [s. n.],2006:798-805.
  • 5Chang C C, Liu Chengyi, Tai Wenkai. Feature Alignment Approach for Hand Posture Recognition Based on Curvature Scale Space[J]. Neurocomputing, 2008, 71(10-12): 1947-1953.
  • 6Mokhtarian F, Abbasi S, Kittler J. Robust and Efficient Shape Indexing Through Curvature Scale Space[C]//Proc. of British Machine Vision Conference. Edinburgh, UK: [s. n.], 1996: 53-62.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部