摘要
利用李雅普诺夫函数方法,研究了一类具有缓变系数的线性中立型微分方程解的稳定性,主要是针对中立型微分方程的初始函数所满足的条件不需要二阶导数存在,只要求对一阶导数满足一定的条件之下,得到了零解稳定的充分条件.
The stability of solution for a class of the linear neutral differential equations with slowly varying coefficient was studied by using the method of Liapunov function. Mainly aiming at the initial function of neutral differential equations satisfied by the condition which did not require the second derivative's existence, only require a derivative satisfying certain conditions,the sufficient conditions for the zero solution stability were obtained.
出处
《集美大学学报(自然科学版)》
CAS
2010年第4期308-311,共4页
Journal of Jimei University:Natural Science
基金
国家自然科学基金项目(10771001)
福建省自然科学基金项目(A0440005)
关键词
缓变系数
中立型系统
稳定性
slowly varying coefficient neutral differential equations stability