期刊文献+

基于噪声特征空间消噪和TEO能量的语音活动度检测 被引量:2

Voice Activity Detection Based on Noise Feature Space NR and TEO Energy
下载PDF
导出
摘要 提出了一种噪声环境下的语音活动度(Voice Activity Detection)的稳健检测算法,算法采用了先降噪后检测的策略.为了使检测算法能够适应嘈杂的噪声环境,本文采用了两个互补性的策略.首先,采用噪声特征空间投影的方法,以较小的语音畸变为代价,去掉语音信号中的有色分量,然后利用Teager Energy Operator(TEO)来增强语音信号与噪声之间的能量差别,最终,根据子带TEO的平均信噪比来区分语音与非语音信号.我们采用了TIM IT数据库与几种常见的噪声来评价该算法,实验表明,该算法优于最新的语音活动度检测算法. A robust voice activity detection algorithm in the presence of noise fields is proposed in this paper,which reduces noise before voice detection. In order to adapt to noise fields, the algorithm is based on two complementary strategies. Firstly, the method of noise feature space protection is adopted to reduce colored component at the expenses of small voice distortion. Secondly, Teager Energy Operator (TEO) is employed to enhance energy differences between voice and noise. The signals are then separated by average noise ratio of TEO subband signals. The evaluation of the algorithm by TIMIT database and several common noises proves that it is superior to other voice activity detection algorithms.
作者 肖蕾
出处 《昆明理工大学学报(理工版)》 北大核心 2010年第3期77-82,共6页 Journal of Kunming University of Science and Technology(Natural Science Edition)
关键词 语音识别 噪声环境 去噪 TEO speech recognition noise environment noise reduction TEO
  • 相关文献

参考文献13

  • 1Sohn J,Sung W.A voice activity detector employing soft decision based noise spectrum adaptation[J].Presented at Proc.ICASSP,1998:23-35.
  • 2Sohn J,Kim N S,Sung W.A statistical model-based voice activity detection[J].IEEE Signal Process,1999,16:1-3.
  • 3Cho Y D,Kondoz A.Analysis and improvement of a statistical model-based voice activity detector[J].IEEE Signal Process,2001,8:276-278.
  • 4Marzinzik M,Kollmeier B.Speech pause detection for noise spectrum estimation by tracking power envelope dynamics[J].IEEE Trans.Speech Audio Process,2002,10:341-351.
  • 5Ramirez J,Segura J,Benitez C,Torre A,Rubio A.Efficient voice activity detection algorithms using long-term speech information[J].Speech Commun,2004,42:271-287.
  • 6Davis A,Nordholm S,Togneri R.Statistical voice activity detection using low-variance spectrum estimation and an adaptive threshold[J].IEEE Trans.Speech Audio Process,2006,14:412-423.
  • 7Tucker R.Voice activity detection using a periodicity measure[J].Presented at Proc.Inst.Elect.Eng,1992:37-41.
  • 8ITU.A Silence Compression Scheme for G.729 Optimized for Terminals Conforming to Recommendation V.70[S].1996.
  • 9Li Q,Zheng J,Tsai A,Zhou Q.Robust endpoint detection and energy normalization for real-time speech and speaker recognition[J].IEEE Trans.Speech Audio Process,2002,10:146-157.
  • 10Ramirez J,Segura J C.An effective subband osf-based VAD with noise reduction for robust speech recognition[J].IEEE Trans.Speech Audio Process,2005,13:1119-1129.

同被引文献27

  • 1邝航宇,张军,季飞,韦岗.一种基于联合得分的孤立词语音识别系统[J].计算机工程,2006,32(10):186-188. 被引量:2
  • 2Jeffrey B C, Ronald S N, Charlene D L, et al. Preventable anesthesia mishaps: A study of human factors [ J ]. Quality & Safety in Health Care, 2002( 11 ) : 277 -279.
  • 3Lowe A, Harrison M J. Computer - enhanced diagnosis of malignant hyperpyrexia [ J ]. Anaesthesia and Intensive Care [ NLM - MEDLINE], 1999, 27(4) : 41 -45.
  • 4Hameroff S R, Navabi M J, Watt R C, et al. Smart alarms in anesthesia heart rate and ECG monil:oring and event recognition using neural network and algorithmic methods [ C ]. International Conference of the IEEE Engineering in Medical and Biologi- cal Society, Philadelphia, Pennsylvania, USA. November 1 - 4, 1990 : 2000 - 2001.
  • 5Hoffman R R, Yates J F. Decision making [ human -centered computing] [J]. Intelligent System, IEEE, 2005, 20( 1 ) :76 -83.
  • 6Jones R W, Harrison M J, Lowe A. Computerised anaesthesia monitoring using fuzzy trend temphtes [ J ]. Artificial Intelli-gence in Medicine, 2001, 21(3) : 247 - 251.
  • 7Kalpakam N V, Venkataramanan S. Eeg signal processing for modern wireless patient monitoring [ C]. 27th Annual Interna- tional Conference of the IEEE Engineering in Medicine and Biology, Shanghai, Sept. 1 - 4, 2005 : 67 - 68.
  • 8Grant P, Naesh O. Fuzzy logic and decision -making in anaesthetics [ J]. Journal of the Royal Society of Medicine, 2005, 88 (1) : 7 -9.
  • 9Imhoff M, Kuhls S. Alarm algorithms in critical care monitoring I J]. International Anesthesia Research Society, 2006:1525 - 1537.
  • 10Melek W W, Lu Z, Kapps A, et al. Comparison of trend detection algorithms in the analysis of physiological time - series data [ J ]. Biomedical Engineering, IEEE Transactions, 2005, 52 (2) : 639 - 651.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部