期刊文献+

一类投资组合模型的对称解

Symmetry-Based Solution of a Portfolio Selection Model
下载PDF
导出
摘要 研究了风险资产服从几何布朗运动的最优投资组合问题。借助于动态规划原理和李代数理论,得到了相应的HJB方程及值函数基于李对称的解析表达式,并给出了最优投资策略,最后通过待定系数法验证了结果的正确性。 The paper addresses the optimal portfolio selection problem which risky assets follows geometric Brownian motion.With the help of the dynamic programming principle and Lie algebra theory,we get the corresponding HJB equation,obtain the analytical expressions of the value function based on Lie symmetry,and present the optimal investment strategy.In the end,the undetermined coefficient method shows the validity of the result.
出处 《江南大学学报(自然科学版)》 CAS 2010年第3期375-378,共4页 Joural of Jiangnan University (Natural Science Edition) 
关键词 投资组合 HJB方程 李对称 几何布朗运动 值函数 portfolio selection HJB equation Lie symmetry geometric Brownian motion value function
  • 相关文献

参考文献7

  • 1Gazizov R K,Ibragimov N H.Lie symmetry analysis of differential equations in finance[J].Nonlinear Dynam,1998,17:387-407.
  • 2Goard J.New solutions to the Bond-Pricing Equation[J].Mathematical and Computer Modelling,2000,32:299-313.
  • 3Mark Craddock,Kelly A Lennox.Lie group symmetries as integral transforms of fundamental solutions[J].Journal Differential Equations,2007,232:652-674.
  • 4Myeni S M,Leach P G L.Complete symmetry group and nonlocal symmetries for some two-dimensional evolution equations[J].Journal of Mathematical Analysis and Applications,2009,357:225-231.
  • 5Myeni S M,Leach P G L.Nonlocal symmetries and the complete symmetry group of 1 + 1 evolution equations[J].Journal of Nonlinear Mathematical Physics,2006,13:377-392.
  • 6Leach P G L,O'Hara J G,Sinkala W.Symmetry-based solution of a model for a combination of a risky investment and a riskless investment[J].Journal of Mathematical Analysis and Applications,2007,334:368-381.
  • 7George W Bluman,Stephen C Anco.Symmetry and Integration Methods for Differential Equations[M].Beijing:Springer-Verlag,2004:297-310.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部