期刊文献+

铜模喷铸Fe_(100-x)Ga_x(15≤x≤30)合金的磁致伸缩 被引量:2

Magnetostriction of Fe_(100-x)Ga_x(15≤x≤30) Alloys Prepared by Copper Mold Injection Casting
原文传递
导出
摘要 采用铜模喷铸法,制备Fe100-xGax(x=15,19,23,27.5,30)合金。实验结果表明铜模喷铸有利于改善低Ga(15≤x<23)Fe100-xGax合金的磁致伸缩,却大幅降低了高Ga(23≤x≤30)Fe100-xGax合金的磁致伸缩。以Fe81Ga19和Fe72.5Ga27.5合金为例,喷铸态Fe81Ga19样品的饱和磁致伸缩比800℃淬火态提高了7%;而喷铸态Fe72.5Ga27.5样品的饱和磁致伸缩为6.1×10-5,仅是800℃淬火态的60.4%。此外,淬火态Fe72.5Ga27.5样品的饱和磁化强度为131.21A·m2·kg-1,也高于喷铸态(126.21A·m2·kg-1)。 Fe100-xGax (x=15, 19, 23, 27.5, 30) alloys were prepared by the technique of copper mold injection casting. It is found that this method could improve the magnetostriction of Fel00_xGax alloys when 15≤x〈23, but deteriorate the magnetostriction of Fe100-xGax alloys when 23 ≤x≤30. Take Fe81Ga19 and Fe72.5Ga27.5 alloys as example, the saturation magnetostriction of the injection-cast Fe81Ga19 was 7% larger than that of the sample quenched from 800℃; however, the saturation magnetostriction of the injection-cast Fe72.sGa275 was 6.1 × 10^-5, which was only 60.4% of the value measured from the corresponding sample quenched from 800 ℃. In addition, the saturation magnetization of the quenched Fe72.sGa27.5 was 131.21 A·m^2·kg^-1, which was also higher than that of the injection-cast one (126.21 A·m^2·kg^-1).
作者 张晶晶 严密
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2010年第A01期162-165,共4页 Rare Metal Materials and Engineering
基金 国家自然科学基金(507039) 新世纪优秀人才支持计划(NCET-05-0526)
关键词 铜模喷铸 Fe—Ga合金 磁致伸缩 相结构 copper mold injection casting Fe-Ga alloys magnetostriction phase structure
  • 相关文献

参考文献15

  • 1Clark A E, Wun-Fogle M, Restorff J B et al. Materials Transactions[J], 2002, 43(5):881.
  • 2Xing Q, Du Y, Mcqueeney R J et al. Aeta Materialia[J], 2008, 56(16) : 4536.
  • 3Lograsso T A, Ross A R, Schlagel D L et al. Journal of Alloys and Compounds[J], 2003, 350(1-2): 95.
  • 4Liu G D, Liu L B, Liu Z H et al. Applied Physics Letters[J], 2004, 84(12):2124.
  • 5Zhang M C, Jiang H L, Gao X X et al. Journal of Applied Physics[J], 2006, 99(2): 023903-1.
  • 6Zhou J K, Li J G. Applied Physics Letters[J], 2008, 92(14 ):141915.
  • 7Cullen J R, Clark A E, Wun-Fogle M et al, Journal of Magnetism and Magnetic Materials[J], 2001, 226-230(1): 948.
  • 8Ikeda O, Kainuma R, Ohnuma I et al. Journal of Alloys and Compounds[J], 2002, 347(1/2): 198.
  • 9Okamoto H, Subramanjan P R, Kacprzak L. Binary Alloy Phase Diagrams[C], OH: ASM International, 1990:1702.
  • 10Lograsso T A, Summers E M. Materials Science and Engineering A[J], 2006, 416(1-2): 240.

二级参考文献12

  • 1KSster W, Godecke T. Z Metallkd, 1977; 68:661.
  • 2Guruswamy S, Srisukhumbowornchai N, Clark A E,Restorff J B, Wun-Forgle M. Scr Mater, 2000; 43:239.
  • 3Clark A E, Wun-Forgle M, Restorff J B, Lograsso T A,Cullen J R. IEEE Trans Mag, 2001; 37:2678.
  • 4R Wu. J Appl Phys, 2002; 91:7358.
  • 5Srisukhumbowornchai N, Guruswamy S. J Appl Phys,2002; 92:5371.
  • 6Lograsso T A, Ross A R, Schlagel D L, Clark A E, WunForgle M. J Alloy Compd, 2003; 350:95.
  • 7Liu G D, Liu L B, Liu Z H, Zhang M, Chen J L, Li J Q,Wu G H, Li Y X, Qu J P, Chin T S. Appl Phys Lett, 2004;84:2124.
  • 8Kawamiya N, Adachi K, Nakamura Y. J Phys Soc Jpn,1972; 33:1318.
  • 9Clark A E, Wun-Forgle M, Restorff J B, Lograsso T A,Cullen J R. Proc 8th Joint Intermag Conf, San Antonio,TX, 2001.
  • 10Clerk A E, Hathaway K B, Wun-Fogle M, Restorff J B,Lograsso T A, Keppens V M, Petculescu G, Taylor R A.J Appl Phys, 2003; 93:8621.

共引文献8

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部