期刊文献+

快速成型模板调制双相掺锶磷酸钙陶瓷骨支架的结构与性能 被引量:7

Structure and Properties of Sr-Containing BCP Scaffolds Modulated by RP Porous Negative Mould
原文传递
导出
摘要 以高强可降解掺锶磷灰石骨水泥(Sr-HAC)为原料,以快速成型(RP)宏孔可控树脂为模板,合成了由掺锶磷灰石(Sr-HA)、掺锶磷酸钙(Sr-TCP)组成的新型双相掺锶磷酸钙(Sr-BCP)骨支架。结果表明,Sr-BCP骨支架相组成可根据Sr-HAC的(Ca+Sr)/P比率予以调控。骨支架宏孔高度连通,孔径400~550μm,且宏孔壁上具有丰富的微孔(孔径2~5μm)。此外,骨支架宏孔参数可通过设计不同孔结构的负模予以反向调控。宏孔百分数与相组成对Sr-BCP支架的抗压强度与降解速率有重要影响。与BCP骨支架相比,Sr-BCP骨支架具有更高的强度及更快的降解速率,一定程度上缓解了BCP陶瓷骨支架在力学和降解性能上难以兼顾的矛盾。 A new type of St-containing biphasic calcium phosphate (Sr-BCP) porous scaffolds were in situ synthesized with Sr-containing calcium phosphate cement (Sr-HAC) hardened bodies as starting materials and structure-controllable rapid-prototyping (RP) porous resins as the negative moulds. Results show that the final product is composed of Sr-containing hydroxyapatite (St-HA) and Sr-containing tricalcium phosphate (Sr-TCP). The phase composition of the product is easily adjusted by the (Ca+Sr)/P molar ratio of the Sr-HAC. The Sr-BCP porous scaffold possesses high intraconnective macropores (Ф400-550μm) and abundant micropores (2-5μm) distributed in the macropore wall. Both phase composition and macropore percentage of the Sr-BCP scaffold play important roles in their in vitro compressive strengths (CS) and degradation rates. The Sr-BCP scaffold exhibits higher strength and faster degradation rate than the Sr-free one, which to some extent decreases the confliction between mechanical strength and degradation rate of the existing Sr-free BCP bone scaffold.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2010年第A01期530-534,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金项目(50702043) 高等学校博士学科点专项科研基金--新教师基金课题(20070698092) 教育部"新翘尾巴优秀人才支持计划"项目(2301G107aaa)资助
关键词 骨组织工程支架 掺锶磷灰石骨水泥 双相掺锶磷酸钙陶瓷 生物陶瓷 bone tissue engineering scaffold Sr-containing hydroxyapatite bone cement Sr-containing biphasic calcium phosphate (Sr-BCP) bioceramics
  • 相关文献

参考文献12

  • 1Gauthier O, Bouler J M, Aguado E et al. Biomaterials[J], 1998, 19(3): 133.
  • 2Christoffersen J, Christoffersen M R, Kolthoff N. Bone[J], 1997, 20:47.
  • 3Guo D G, Xu K W, Han Y et al. Biomaterials[J], 2005, 26 (19): 4073.
  • 4Takasi S, Chow L C. J Mater Sci: Mater Med[J], 2001, 12:135.
  • 5Raynaud S, Champion E, Lafon J P et al. Biomaterials[J], 2002, 23:1081.
  • 6Lerous L, Lacout J L. J Mater Res[J], 2001, 16:171.
  • 7Almirall A, Larrecq G, Delgado J A et al. Biomaterials[J], 2004, 25:3671.
  • 8Galois L, Mainard D, Bordji K et al. Actualites en Biomateriaux [J], 1996 (3): 361.
  • 9Kalita S J, Bose S, Hosick H L et al. Mater Sic & Eng C[J], 2003, 23:611.
  • 10Yuan H P, Kurashina K J, Bruijin J D et al. Biomaterials[J], 1999, 20:1799.

同被引文献49

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部