期刊文献+

基于自适应权重粒子群的电容层析成像边界灰度补偿算法 被引量:5

A Novel Gray Boundary Compensation Algorithm for Electrical Capacitance Tomography System Based on Adaptive Particle Swarm Weight
下载PDF
导出
摘要 电容层析成像图像重建是一个典型的病态问题,它的解是不稳定的.为了对这个不适定问题进行求解,在分析电容层析成像基本原理的基础上,提出了一种自适应权重粒子群的电容层析成像边界灰度补偿算法.该算法通过引入粒子群的平均绝对速度与理想速度,自适应调整粒子群优化算法中的参数,对成像后图像边界周围的灰度进行补偿.数值实验结果表明,同线性反投影和共轭梯度算法相比,进行边界灰度补偿后的图像兼备成像质量高、边界均匀稳定等优点,为ECT图像重建算法的研究提供了一个新思路. Electrical capacitance tomography(ECT) image reconstruction is a typical problem,and its solution is unstable.In order to solve this ill-posed problem,in the analysis of the basic principles of electrical capacitance tomography,a novel gray boundary compensation algorithm for electrical capacitance tomography system based on adaptive particle swarm weight is presented.The algorithm,through the introduction of the average absolute speed and the ideal speed in particle swarm,adaptively adjusts the parameters of particle swarm optimization algorithm and compensates for the gray border around the image.Experimental results and simulation data indicate that the compensated image of gray border can provide high quality images and favorable stabilization compared with LBP,conjugate gradient algorithms in simple flow pattern and this new algorithm presents a feasible and effective way to research an image reconstruction algorithm for Electrical Capacitance Tomography System.
出处 《哈尔滨理工大学学报》 CAS 北大核心 2010年第3期44-49,共6页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金(60572153) 高等学校博士学科点专项科研基金(2008-2011) 黑龙江省自然科学基金(F200609) 中央高校基本科研业务费专项资金资助(DL09AB02) 东北林业大学大学生创新基金(091022559)
关键词 电容层析成像 图像重建 自适应粒子群 electrical capacitance tomography image reconstruction adaptive particle swarm
  • 相关文献

参考文献12

  • 1LOSER T,WAJMAN R, MEWES D. Electrical Capactrical Tomography Image Reconstruction Along Electrical Field lines [ J ]. Measurement Science and Technology,2001 (12) : 1083 - 1091.
  • 2XIE C G, BECK M S. 8-electode Capacitance System for Two- component Flow Identification[ J ]. Part 1 : Tomographic Flow Imaging, IEE Proc A,1989, 136(4): 173-190.
  • 3WARSITO W, FAN L S. Measurement of Real-time Flow Structures in Gas-liquid and Gas-liquid-solid Flow Systems Using Electrical Capacitance Tomography (ECT) [ J ]. Chemical Engineering Science 2001,56(6) :6455 -6462.
  • 4YANG W Q, Modeling of Capacitance Tomography Sensors [ J ]. IEE Proc. Sci. Meas. Technol. 1997,144:203 -220.
  • 5OSTROWSKI K L, LUKE S P, WILLIAMS R. A. Simulation of the Performance of Electrical Capacitance Tomography for Muasurement of Dense Phase Pneumatic Conveying[ J]. Chemical Engineering Journal, 1997,6:8197 - 8205.
  • 6HJERTAKER B.T. Static Characterization of a Dual Sensor Flow Imaging System [ J ]. Flow Measurement and Instrumentation, 1998,9 : 183 - 191.
  • 7LIU S, YANG W Q, WANG H, et al. Investigation of Square Fluidized Beds Using Capacitance Tomography: Preliminary Results [ J]. Measurement Science and Technology,2002,12 ( 8 ) : 1120 - 1125.
  • 8XI Shaolin,ZHAO Fengzhi. Computation Methods for Optimization [ J ]. Shanghai : Shanghai Scientifie & Technical Publishers, 1983, 7:113 -117.
  • 9YANG W Q, PENG L H. Image Reconstruction Algorithms for Electrical Capacitance Tomography [ J ]. Meas. Sci. Technol, 2003, 14:R1 -R3.
  • 10WANG Huaxiang,ZHU Xueming,ZHANG Lifeng. Conjugate Gradient Algorithm for Electrical Capacitance Tomography [ J ]. Journal of Tianjin University,2005,38( 1 ) :1 -4.

二级参考文献5

共引文献19

同被引文献45

  • 1田海军,周云龙.电容层析成像技术研究进展[J].化工自动化及仪表,2012,39(11):1387-1392. 被引量:10
  • 2胡建秀,曾建潮.具有随机惯性权重的PSO算法[J].计算机仿真,2006,23(8):164-167. 被引量:37
  • 3Simone G,Agostino M.A sub-boundary approach for enhanced particleswarm optimization and its application to the design of artificialmagnetic conductors. IEEE Transactions on Antennas and Propagation . 2007
  • 4Coelho L S,Lee C S.Solving economic load dispatch problems inpower systems using chaotic and Gaussian particle swarm optimizationapproaches. Electrical Power Energy System . 2008
  • 5Anghinolfi D,Paolucci M.A new discrete particle swarm optimizationapproach for the single-machine total weighted tardiness schedulingproblem with sequence-dependent setup times. European Journal ofOperational Research . 2007
  • 6Shi X H,Liang Y C.Particle swarm optimization-based algorithms forTSP and generalized TSP. Information Processing Letters . 2007
  • 7Mansour M M,Mekhamer S F.A modified particle swarm optimizerfor the coordination of directional overcurrent relays. IEEEtransactions on power delivery . 2007
  • 8Hu Qinghua,Liu Jinfu,Yu Daren.Mixed feature selection based ongranulation and approximation. Knowledge Based Systems . 2008
  • 9PARSOPOULOS K E,VRAHATIS M N.Initializing the particleswarm optimizer using the nonlinear simplex method. Advancesin Intelligent Systems,Fuzzy Systems,Evolutionary Computation . 2002
  • 10Suganthan PN.Particle swarm optimizer with neighborhood operator. Proceedings of the 1999 Congress on Evolutionary Computation . 1999

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部