摘要
研究了在一给定开集G=G1∪G2内使得集族{f(2nz):n∈N}成为正规族的整函数f的存在性,并且证明了此集族恰在集合G1内有限正规而在集合G2内正规但非有限正规.
We study the existence of an entire function f in the complex plane C such that the family {f(2nz):n∈N} forms a normal family exactly for z in a given open set G=G1∪G2.And we prove that its 2n-translated family is finitely normal exactly on G1 and normal but not finitely normal on G2.
出处
《延边大学学报(自然科学版)》
CAS
2010年第2期109-113,169,共6页
Journal of Yanbian University(Natural Science Edition)