期刊文献+

飞机颤振模态参数辨识的期望最大化

The Application of Expectation Maxmization Algorithm in Aircraft Flutter Model Parameter Identification
下载PDF
导出
摘要 文章采用一种适用于噪声环境的期望最大化算法,准确地辨识飞机的颤振模态参数。在建立随机状态空间模型的基础上,该算法以迭代的形式计算似然函数的最大值,它包括两步:期望和最大化。无需计算对数似然函数的二阶偏导及其近似式,可提高似然函数收敛于平稳点的可能性。算前采用新息方差准则估计出系统的阶数,以减少计算复杂度。最后利用试飞试验数据辨识飞机的系统参数,验证了其方法的有效性。 The traditional least- squares identification method gives biased parameter estimates when the observed input -output data are corrupted by noises. A general EM algorithm is adopted for aircraft flutter model parameter identification under the noisy environment. The EM algorithm is an iterative algorithm based on the stochastic state space model. It is used to compute the maximum value for the likelihood function that consists of two steps : namely the E - and M - steps. No calculation of the second order derivatives or approximated values is needed. This algorithm can increase the likelihood function converging to a stationary point. Before applying the algorithm,the innovation variance criterion is used to estimate the system's order in order to decrease the complexity. Finally the efficiency of this method is illustrated with a simulation example.
出处 《南昌航空大学学报(自然科学版)》 CAS 2010年第2期35-40,共6页 Journal of Nanchang Hangkong University(Natural Sciences)
关键词 参数辨识 期望最大化算法 颤振 飞机 parameter identification EM algorithm flutter aircraft
  • 相关文献

参考文献5

  • 1唐炜,史忠科,李洪超.飞机颤振模态参数辨识的频域广义整体最小二乘算法[J].控制与决策,2006,21(7):726-729. 被引量:5
  • 2蔡金狮.飞行器系统辨识[M].北京:宇航出版社,2007:93-108.
  • 3A.Dempster,N.M.Larid.Maximum likelihood from incomplete data via the EM algorithm[J].J.Royal Statistical Society,1997,39(3):1-38.
  • 4S.Gibson,B.Nonness.Robust maximum-likelihood estimation of multivariable dynamic[J].Automatica,2005,41(4):1667-1682.
  • 5R.Diversi.R.Guidorzi.Maximum likelihood identification of noisy input-output models[J].Automatica,2007(3):464-472.

二级参考文献10

  • 1Ghiringhell L G , Lanz M , Mantegazza P . A Comparisonof Methods Used for the Identification of Flutter from Experimental Data[J].J of Sound and Vibration, 1987,119(1):39-51.
  • 2Tang W, Shi Z K. Wavelet Denoising of Flight Flutter Testing Data for Improvement of Parameter Identification [J]. Chinese J of Aeronautics, 2005, 18(1):72-77.
  • 3Fero E, Brenner M, Paduano J, et al. Time-frequency Analysis Transfer Function Estimation and Applicantion to Flutter Clearance[J]. J of Guidance,Control and Dynamics, 1998, 21(3):375-382.
  • 4Schoukens J, Pintelon R, Renneboog J. A ML Estimator for Linear and Non-linear Systems - A Practical Application of Estimation Techniques in Measurement Problems [J]. IEEE Trans on Instrumentation and Measurement, 1988, 37(3):10-17.
  • 5Balogh L, Kollar I. Generalization of a Total Least Squares Problem in Frequency-domain System Identification[J]. IEEE Trans on Instrumentation and Measurement, 2002, 51(6): 1353-1357.
  • 6Pintelon R. Analyzes, Development and Applications of TLS Algorithms in Frequency Domain System Identification [J]. SIAM J on Matrix Analysis and Applications, 1998,19(4): 983-1004.
  • 7Vandersteen G, Van Hamme H, Pintelon R. General Framework for Asymptotic Properties of Generalized Weighted Nonlinear Least Squares Estimators with Deterministic and Stochastic Weighting [J]. IEEE Trans on Automatic Control, 1996,41(10): 1501-1507.
  • 8Huffel V S, Vandewalle J. The Total Least Squares Problem: Computational Aspects and Analysis [A].Frontiers in Applied Mathematics [M]. Philadelphia:SIAM, 1991.
  • 9Gene H G, Van Loan C. Matrix Computations[M].Third Edition. Baltimore:Johns Hopkins University Press, 1996.
  • 10Pintelon R, Guillaume P, Rolain Y, et al. Parametric Identification of Transfer Functions in the Frequency Domain - A Survey[J]. IEEE Trans on Automatic Control, 1994, 39(11): 2245-2260.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部