期刊文献+

基于神经网络MIMO非仿射系统自适应控制 被引量:2

Neural Network Based Adaptive Control for MIMO Non-affine Systems
下载PDF
导出
摘要 针对一类多输入多输出非仿射非线性系统,基于神经网络设计了一种自适应控制方案。该系统隐含控制输入,利用隐函数定理和伪控制概念提出了控制运算法则,采用Lyapunov方法证明了系统的稳定性。该方案采用神经网络补偿系统中的非线性部分,设计了鲁棒项来增加系统的抗干扰能力。仿真结果充分证明了该方案的有效性和可行性。 A novel adaptive control method based neural network for a general class of MIMO non-affine nonlinear system was proposed,which are implicit function with respect to control input.The control algorithm is concluded by implicit function theorem and the design idea of pseudo-control.The stability of system is proved through Lyapunov method.A Three-Layer Neural Network is used to compensate the modeling errors and a robust control is also designed to add the anti-interference ability of system.Simulation results demonstrate the effectiveness and feasibility of proposed scheme.
出处 《青岛科技大学学报(自然科学版)》 CAS 2010年第3期317-320,共4页 Journal of Qingdao University of Science and Technology:Natural Science Edition
基金 山东省自然科学基金项目(Y2007G06)
关键词 MIMO非仿射非线性系统 自适应控制 神经网络 LYAPUNOV方法 MIMO non-affine nonlinear systems adaptive control neural network Lyapunov method
  • 相关文献

参考文献7

  • 1TIAN Jie,XIE Xue-Jun.Adaptive State-feedback Stabilization for More General High-order Stochastic Nonlinear Systems[J].自动化学报,2008,34(9):1188-1191. 被引量:6
  • 2杨光,张庆灵,郭立新.一类非线性广义系统的状态反馈控制[J].东北大学学报(自然科学版),2008,29(9):1236-1239. 被引量:1
  • 3Zhao Tong,Sui Shulin.Adaptive control for a class of non-affine nonlinear systems via two-layer neural networks[C]// IEEE.Proceeding of the 6th World Congress on Intelligent Control and Automation,Dalian,2006:959-962.
  • 4Zhao Tong.RBFN-based decentralized adaptive control of a class of large-scale non-affine nonlinear systems[J].Neural Computing and Applications,2008,17:357-364.
  • 5Calise A J,Hovakimyan N,Idan M.Adaptive output feedback control of nonlinear systems using neural networks[J].Automatica,2001,37(8):1201-1211.
  • 6Zhao Tong.Modeling for hysteresis nonlinearity based on peisach and designing of the scheme of neural networks adaptive control[D].Shanghai:Shanghai Jiaotong University,2005.
  • 7Polycarpou M M.Stable adaptive neural control scheme for nonlinear system[J].IEEE Transactions on Automatical Control.1996,41(3):447-451.

二级参考文献19

  • 1Xie X J, Tian J. State-feedback stabilization for high-order stochastic nonlinear systems with stochastic inverse dynamics. International Journal of Robust and Nonlinear Control, 2007, 17(14): 1343-1362.
  • 2Tian J, Xie X J. Adaptive state-feedback stabilization for high-order stochastic non-linear systems with uncertain control coefficients. International Journal of Control, 2007, 80(9): 1503-1516.
  • 3Xie X J, Tian J. Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization. Automatica, to be published.
  • 4Deng H, Krstic M, Williiams R. Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Transactions on Automatic Control, 2001, 46(8): 1237-1253.
  • 5Qian C J, Lin W. Almost disturbance decoupling for a class of high-order nonlinear systems. IEEE Transactions on Automatic Control, 2000, 45(6): 1208-1214.
  • 6Krstic M, Deng H. Stabilization of Nonlinear Uncertain Systems. New York: Springer, 1998.
  • 7Wu Z J, Xie X J, Zhang S Y. Stochastic adaptive backstepping controller design by introducing dynamic signal and changing supply function. International Journal of Control, 2006, 79(12): 1635-1646.
  • 8Liu S J, Zhang J F, Jiang Z P. Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems. Automatica, 2007, 43(2): 238-251.
  • 9Wu Z J, Xie X J, Zhang S Y. Adaptive backstepping controller design using stochastic small-gain theorem. Automatica, 2007, 43(4): 608-620.
  • 10Isidori A. A tool for semiglobal stabilization of uncertain non- minimum-phase nonlinear systems via output feedback [J ]. IEEE Transactions on Automatic Control, 2000,45 ( 10 ) : 1817 1827.

共引文献5

同被引文献25

  • 1刘军,张利建,薛明.基于遗传算法的仿人智能控制[J].青岛科技大学学报(自然科学版),2007,28(2):162-165. 被引量:1
  • 2Rudenko O G, Bezsonov A A, Liashenko A S, et al. Approximation of Gaussian basis functions in the problem of adaptive control of nonlinear objects[J]. Cybernetics and Systems Analysis, 2011, 47(1): 1-10.
  • 3Zhao T, Sui S L. Adaptive control for a class of non-aNne nonlinear systems via two-layer neural networks[C]// The Sixth World Congress on Intelligent Control and Automation, 2006, 1: 958-962.
  • 4Boskovic d D, Chen L J, Mehra R K. Multivariable adaptive controller design for a class of non-affine models arising in flight control[C]// Proceedings of the 40th IEEE Conference on Decision and Control, 2001, 3: 2442- 2447.
  • 5Calise A J, Sharma M, Corban J E. Adaptive autopilot design for guided munitions[J]. Journal of Guidance,Control and Dynamics, 2000, 23(5): 837-843.
  • 6Yang B J, Calise A J. Adaptive control of a class of nonaiTine systems using neural networks[J]. IEEE Transactions on Neural Networks, 2007, 18(4): 1149-1159.
  • 7Hovakimyan N, Lavretsky E, Sasane A, et al. Dynamic inversion for nonaffine-in-control systems via time-scale separation: Part I[C]// Proceedings of the 2005 American Control Conference, 2005: 3542-3547.
  • 8Lavretsky E. Hovakimyan N. Adaptive dynamic inversion for nonaffine-in-control systems via time-scale separa- tion: Part II[C]// Proceedings of the 2005 American Control Conference, 2005: 3548-3553.
  • 9Tee K P, Ge S S, Tay F E H. Adaptive neural network control for helicopters in vertical flight[J]. IEEE Trans- actions on Control Systems Technology, 2008, 16(4): 753 -762.
  • 10Imai A K, Costa R R, Hsu L, et al. Multivariable adaptive control using high-frequency gain matrix factoriza- tion[J]. IEEE Transactions on Automatic Control, 2004, 49(7): 1152-1156.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部