摘要
本文研究有界区域ΩR^N上拟线性奇异椭圆方程.利用变分法,在f满足非二次条件的情况下,运用对偶喷泉定理证明了存在λ~*>0使得当λ∈(0,λ~*)时,该方程存在无穷多个具有负能量的弱解{u_k}.推广了s=0时的相应结果.
In this article,we consider the following quasilinear singular elliptic equation. By using the variational methods,if f satisfies nonquadratic condition,via dual fountain theorem, we prove that there existsλ^〉0 such that for anyλ∈(0,λ^*),this problem has a sequence of solutions {uk} belong to W0^1,p(Ω) such that I(uk)0 and I(uk)→0 as k→+∞,which generalize the results of the case s = 0.
出处
《数学杂志》
CSCD
北大核心
2010年第4期726-730,共5页
Journal of Mathematics