期刊文献+

一类拟线性奇异椭圆方程无穷多解的存在性 被引量:2

EXISTENCE OF INFINITELY MANY SOLUTIONS FOR SOME QUASILINEAR SINGULAR ELLIPTIC EQUATION
下载PDF
导出
摘要 本文研究有界区域ΩR^N上拟线性奇异椭圆方程.利用变分法,在f满足非二次条件的情况下,运用对偶喷泉定理证明了存在λ~*>0使得当λ∈(0,λ~*)时,该方程存在无穷多个具有负能量的弱解{u_k}.推广了s=0时的相应结果. In this article,we consider the following quasilinear singular elliptic equation. By using the variational methods,if f satisfies nonquadratic condition,via dual fountain theorem, we prove that there existsλ^〉0 such that for anyλ∈(0,λ^*),this problem has a sequence of solutions {uk} belong to  W0^1,p(Ω) such that I(uk)0 and I(uk)→0 as k→+∞,which generalize the results of the case s = 0.
作者 龚亚英
出处 《数学杂志》 CSCD 北大核心 2010年第4期726-730,共5页 Journal of Mathematics
关键词 SOBOLEV-HARDY临界指数 拟线性椭圆方程 (PS)_c~*条件 对偶喷泉定理 非二次条件 Sobolev-Hardy critical exponent quasilinear elliptic equation (PS)_c~* condition dual fountain theorem nonquadratic condition
  • 相关文献

参考文献10

  • 1Chou K S,Chu C W.On the best constant for a weighted Sobolev-Hardy inequality[J].J.London Math.Soc.,1993,48(2):137-151.
  • 2程铭东,徐彬.一类半线性椭圆方程解的存在性[J].数学杂志,2008,28(4):443-448. 被引量:2
  • 3潘佳庆.一类非线性椭圆型方程的Dirichlet问题[J].数学杂志,2003,23(4):452-454. 被引量:1
  • 4Ghoussoub N,Kang X S.Hardy-Sobolev critical elliptic equations with boundary singularities[J].Ann.I.H.Poincare-AN,2004,21(6):767-793.
  • 5Ghoussoub N,Yuan C.Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[J].Trans.Amer.Math.Soc,2000,352(12):5703-5743.
  • 6Kang D S,Peng S J.Positive solutions for singular critical elliptic problems[J].Applied Math.Letters,2004,17(4):411-416.
  • 7Kang D S,Peng S J.Solutions for semi-linear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential[J].Appl.Math.Lett.,2005,18(10):1094-1100.
  • 8Shen Z F,Yang M B.Nontrivial solution for Hardy-Sobolev critical elliptice equations[J].Acta.Math.Sinica,2005,48(5):999-1010.
  • 9商彦英,唐春雷.一类奇异椭圆方程无穷多解的存在性[J].东北师大学报(自然科学版),2007,39(4):10-16. 被引量:4
  • 10Willem M.Minimax Theorems[M].Boston:Birkh(a)user,1996.

二级参考文献20

  • 1王红,林晓宁.奇异二阶微分方程狄利克莱边值问题解的存在及惟一性[J].东北师大学报(自然科学版),2006,38(2):1-5. 被引量:7
  • 2D吉耳巴格 N S 塔丁格著 叶其孝译.二阶椭圆型偏微分方程[M].上海:上海科学技术出版社,1981.1.178-180.
  • 3A弗里德曼 夏宗伟译.抛物型偏微分方程[M].北京:科学出版社,1964.103-104.
  • 4A benkirane, A Elmahi, A stronly nonlinear elliptic equation having natural growth terms and L^I data[J]. Nonlinear Analysis, 2000, 39: 403-411.
  • 5R Molle, K Passaseo, Multiple solutions of nonlinear elliptic equation Dirichlet Problems in exterior domains [J]. Nonlinear Analysis 2000, 39: 447-462.
  • 6GHOUSSOUB N, KANG X S. Hardy-Sobolev critical elliptic equations with boundary singu-larities[J ]. Ann I H Poincare-AN. 2004, 21 (6) :767-793.
  • 7KANG D S, PENG S J. Positive solutions for singular critical elliptic problems [ J ]. Applied Mathematics Letters, 2004, 17 ( 4 ) : 411- 416.
  • 8KANG D S,PENG S J. Solutions for semi-linear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential[J]. Appl Math Lett,2005,18(10) : 1094-1100.
  • 9SHEN Z F, YANG M B. Nontrivial solution for Hardy-Sobolev critical elliptiee equations [J ], Acta Math Sinica, 2005,48 (5) : 999- 1010.
  • 10WILLEM M. Minimax theorems[ M ]. Boston: Birkhauser, 1996.

共引文献4

同被引文献9

  • 1Jannelli E. The role played by space dimension in elliptic critical problems [J]. J. Di?erential Equations,1999,156: 407-426.
  • 2Cao Daomin,Peng Shuangjie. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms [J]. J. Di?erential Equations,2003,193: 424-434.
  • 3Dao Daomin,Han Pigong. Solutions for semilinear elliptic equations with critical exponents and Hardy potential [J]. J. Di?erential Equations,2004 205: 521-537.
  • 4Ferrero A,Gazzola F. Existence of solutions for singular critical growth semilinear elliptic equations [J]. J. Di?erential Equations,2001,177: 494-522.
  • 5Kang Dongsheng,Peng Shuangjie. Positive solutions for a singular critical elliptic problem [J]. Applied Mathematics Letters,2004,17: 411-416.
  • 6Alves C O,Filho D C de M,Souto M A S. On systems of elliptic equations involving subcritical or critical Sobolev exponents [J]. Nonlinear Analysis,2000,42: 771-787.
  • 7Liu Zhaoxia,Han Pigong. Existence of solutions for singular elliptic systems with critical exponents [J]. Nonlinear Analysis,2008,69: 2968-2983.
  • 8金玲玉,麦麦提明阿不都克里木.带Robin边值条件的半线性奇异椭圆方程正解的存在性(英文)[J].数学杂志,2008,28(5):473-482. 被引量:2
  • 9廖家锋,张鹏.奇异半线性椭圆问题解的存在与不存在性(英文)[J].数学杂志,2011,31(5):777-784. 被引量:4

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部