期刊文献+

连接图稳定性方法及其应用

Connection Graph Stability Method and Its Application
下载PDF
导出
摘要 运用连接图稳定性方法分析单向耦合结构与双向耦合结构的环状网络,在断开一条边从环状变为链状时同步能力的变化.从双向环状耦合结构到链状结构同步能力是减弱的,在N很大时同步能力约为原来的1/3.数值仿真定性地验证了上述结论.还发现该方法对于单向耦合结构网络有一定的局限性. This paper applies the connection graph stability method to the ring networks with unidirectional or bidirectional coupling structure.The method clarifies that the synchronizing ability of the two different structures is completely different by cutting a link.The synchronizing ability will decrease if the change is from bidirectional ring to bidirectional chain.The change on synchronizing ability will be one third of the original if the number of N is large enough for the first case.The numerical simulation testify qualitatively the results.This paper also discovers the limitation of this method to unidirectional coupling networks.
作者 魏娟 刘鹏
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2010年第4期345-348,共4页 Journal of Henan University:Natural Science
关键词 复杂网络 同步 连接图 稳定性 complex networks synchronization connection graph stability
  • 相关文献

参考文献8

  • 1Watts D J,Strogatz S H.Collective dynamics of "small world" networks[J].Nature,1998,393:440-442.
  • 2Baraasi A L,Albert R.Emergence of scaling in random networks[J].Science,1999,286:509-412.
  • 3Louis M.Pecora Thomas L Carroll.Master stability for synchronized coupled systems[J].Phys Rev Lett,1998,80:2109.
  • 4Belykh I V,Belykh V N,Hasler M.Connection graph stability method for synchronized coupled chaotic systems[J].Physica:D,2004,195:159-187.
  • 5韩秀萍,陆君安.从环状网络到链状网络同步能力的变化[J].中国科学(E辑),2007,37(6):748-756. 被引量:10
  • 6Igor Belykh,Martin Hasler.Synchronization and graph topology[J].Bifurcation and Chaos,2005,15(11):3426-3428.
  • 7Wu C W,Chua L O.On a conjecture regarding the synchronization in an array of linearly coupled dynamical systems[J].IEEE Trans,Circuits Syst.-I,1996,43:161-165.
  • 8Li Damei,Lu Jun-an,et al.Estimating the bounds for the Lorenz famlily of chaotic systems[J].Chaos Solitons and Fractals,2005,23:529-534.

二级参考文献22

  • 1Watts D J, Strogatz S H. Collective dynamics of “small world” networks. Nature, 1998, 393:440--442.
  • 2B arabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286:509--512.
  • 3汪小帆,李翔,陈关荣.复杂网络理论与应用.北京:清华大学出版社,2006.
  • 4Hong H, Kim B J, Choi M Y, et al. Factors that predict better synchronizability on complex networks. Phys Rev E, 2004, 69: 067105-1-067105-4.
  • 5Barahona M, Pecora L M. Synchronization in small-world systems. Plays Rev Lett, 2002, 89(5): 054101-1-054101-4.
  • 6Wang X F, Chen G R. Synchronization in scale-free dynamical networks: Robustness and fragility. IEEE Trans Circuits Syst-I, 2002, 49(1): 54--62.
  • 7Wu C W, Chua L O. Application of graph theory to the synchronization in an array of coupled nonlinear oscillators. IEEE Trans Circuits Syst-I, 1995, 42(8): 494--497.
  • 8Wang X F, Chen G R. Synchronization in small-world dynamical networks. Int J B ifur Chaos, 2002, 12(1): 187--192.
  • 9Matfas M A, Pere-Munuzuri V, Lorenzo M N, et al. Observation of a fast rotating wave in rings of coupled chaotic oscillators. Phys Rev Lett, 1997, 78(2): 219--222.
  • 10Lorenzo M N, Madno I P, Pere-Munuzud V, et al. Synchronization waves in arrays of driven chaotic systems. Phys Rev E, 1996, 54 (4): 3094--3097.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部