期刊文献+

具有常Φ-截面曲率c的卷积子流形

Warped product submanifold with constant Φ - sectional curvature
下载PDF
导出
摘要 在结构向量场ξ是具有常Φ-截面曲率c的β-Kenmotsu流形的卷积子流形的法向量场的情况下,定义了具有常Φ-截面曲率c的β-Kenmotsu空间形式的卷积子流形的平均曲率模长||H||2和卷积函数f的一个不等关系式,另外还推导了卷积子流形是全实子流形的相应不等式. Under the condition that structure vector field ξ is a normal vector field of M1× f M2,this paper considers the warped product submanifold isometrically immersed in a real β-Kenmotsu space form with constant Φsectional curvature.It establishes a sharp relationship between the warping function f of M1× f M2 and the squared mean curvature ||H||2.It also gives similar equality of totally real submanifold.
机构地区 河南科技学院
出处 《河南科技学院学报》 2010年第1期62-66,共5页 Journal of Henan Institute of Science and Technology(Natural Science Edition)
关键词 Kenmotosu流形 卷积子流形 截面曲率 全实子流形 kenmotosu manifold warped product submanifold sectional curvature totally real submanifold
  • 相关文献

参考文献6

  • 1Chen B Y.On isometric minimal immersions from warped products into real space forms[J].Proc.Edinburgh Math.Soc.,2002,45:579-587.
  • 2Chen B Y.Non-immersion theorems for warped products in complex hyperbolic spaces[J].Proc.Japan Acad.Ser A.,2002,78:96-100.
  • 3Chen B Y.A general opitimal inequality for warped products in complex projective spaces and its applications[J].Proc.Japan Acad.Ser A.,2003,79:89-94.
  • 4Matsumoto K,Mihai I.Warped product submanifolds in Sasakian space forms[J].SUTJ Math.,2002,38:135-144.
  • 5Yoon D W.Some inequality for warped product incosymplectic space form[J].Differential Geometry-Dynamical Systems,2004,3:51-58.
  • 6Chen B Y.Some pinching and classification theorems for minimal submanifoldsAr[J].Arch.Math.,1993,60:568-578.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部