期刊文献+

改进遗传算法求解TSP问题

An improved genetic algorithm for solving traveling salesman problems
下载PDF
导出
摘要 遗传算法(GA)是由遗传进化理论指导的随机搜索寻优算法,传统GA的寻优能力与随机搜索能力之间存在着相互制约的关系,所以对地形极其复杂、极无规律的TSP的应用效果并不十分理想.通过利用互换启迪交叉算子加快局部搜索算法的收敛速度,利用模式增加修补算子防止算法早熟收敛,给出了一种求解TSP问题的新型遗传算法.仿真实验表明该算法是有效的和可行的. Genetic Algorithms (GA)is a random search algorithm optimization instructed by the heredity evolution theory.But the relations between the superior ability and the stochastic search ability of traditional GA is mutually restrictive,therefore,it is not ideally effective for the TSP with the extremely complex,disordered terrain .Through the use of swap inspiration crossover operator to accelerate the convergence of local search algorithm and the use of increasing pattern patching operator to prevent premature convergence,this paper gives an improved genetic algorithm for solving traveling salesman problems.Simulation experiments show that the method is effective and feasible.
作者 炎士涛
机构地区 河南科技学院
出处 《河南科技学院学报》 2010年第1期86-89,共4页 Journal of Henan Institute of Science and Technology(Natural Science Edition)
关键词 遗传算法 互换启迪交叉算子 模式增加修补算子 TSP genetic algorithms swap inspiration crossover operator increasing pattern patching operator traveling salesman problem
  • 相关文献

参考文献5

二级参考文献16

  • 1Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 1996,4(1):1~32.
  • 2Michalewicz Z. Genetic algorithms, Numerical optimization and constraints. In: Esheiman LJ, ed. Proceedings of the 6th International Conference on Genetic Algorithms. San Mateo: Morgan Kanfmann Publishers, 1995 151~158.
  • 3Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering,2000,186(2--4):311 ~338.
  • 4Runarsson TP, Yao X. Stochastic ranking for constrained evolutionary optimization. IEEE Transaclons on Evolutionary Computation, 2000,4(3):284-294.
  • 5Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999,3(4):257~271.
  • 6Beyer H-G, Deb K. On self-adaptive features in real-parameter evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 2001,5(3):250--270.
  • 7Ono I, Kita H, Kobayashi S. A robust real-coded genetic algorithm using unimodal normal distribution crossover augmented by uniform crossover: effects of self adaptation of crossover probabilities. In: Banzhaf W, Daida J, Eiben E, eds. GECCO'99:Proceedings of the Genetic and Evolutionary Computation Conference. San Mateo: Morgan Kaufmann Publishers, 1999. 496~503.
  • 8Tsutsui S, Yamamura M, Higuchi T. Multi-Parent recombination with simplex crossover in real coded genetic algorithms. In:Banzhaf W, Daida J, Eiben E, eds. GECCO'99: Proceedings of the Genetic and Evolutionary Computation Conference. San Mateo:Morgan Kaufmann Publishers, 1999. 657---664.
  • 9Kita H. A comparison study of self-adaptation in evolution strategies and real-coded genetic algorithms. Evolutionary Computation,2001,9(2):223~241.
  • 10Deb K, Joshi D, Anand A. Real-Coded evolutionary algorithms with parent-centric recombination. Technical Report, KanGALReport No.2001003, Kanpur: Indian Institute of Technology, 2001.

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部