期刊文献+

基于目标自动识别技术的热红外伪装效果评价

Automatic Target Recognition-Based IR Camouflage Effectiveness Evaluation
下载PDF
导出
摘要 为了对大量不同伪装目标的伪装效果进行有效的评价,需要对采集的图像进行自动目标识别处理.根据探测器和侦察平台参数,自动识别算法给出疑似目标区域及其可信度.在此基础上,自动检测识别伪装目标变得更加合理有效.疑似目标区域的确定也可以作为评价目标伪装效果的另一个标准.文中主要介绍自动识别算法、典型图像疑似目标区域确定及其对伪装评价的影响等内容. For the purpose of evaluating the effectiveness of the various camouflage methods,the Automatic Target Recognition(ATR for short) system technology is put forward.The paper presents some aspects of the reconnaissance detection algorithm,detection ranges for hypothesis target and the influence to the Camouflage Effectiveness Evaluation.The collected images can be identified and processed.According to the detector and reconnaissance system parameters,the ATR algorithm can report the detection range for each hypothesis target and its confidence.Based on this basis,the automatic detection and identification of camouflage targets become more reasonable and effective.Determination of the detection range could be considered as an additional criteria for camouflage evaluation.
出处 《光电技术应用》 2010年第3期24-25,61,共3页 Electro-Optic Technology Application
关键词 目标自动识别 可信度 疑似目标区域 伪装效果评价 automatic target recognition confidence detection range for hypothesis target camouflage effectiveness evaluation
  • 相关文献

参考文献6

  • 1A Korn,M Muller,C K Sung.Computer augmented detection of targets in cluttered and low-contrast backgrounds[C] //Proceedings of SPIE,1997.
  • 2M Muller,N Heinze,L Berger,et al.WITMUS-Wissensbasierte,teilautomatische Bildauswertung fur die multisensorielle Aufklarung[J].Zwischenbericht,Phase,2000.
  • 3U Jager,B Durr,S Fries,et al.Bewertung von Verfahren zur automatischen/teilautomatischen Luftbildauswertung[J].Zwischenbericht,2002.
  • 4A Konig.Neuronale Strukturen zur sichtgestutzten Ober-flaheninspektion yon Objekten in industrieller Umgebung[D].Darmstadt,1995.
  • 5张亚楠,汤心溢.红外目标自动识别(ATR)算法性能评估的方法研究[J].红外,2007,28(6):15-20. 被引量:6
  • 6张雪松,江静,王大鹏,彭思龙.红外目标自动识别中的信息处理及其新进展[J].红外技术,2009,31(4):187-192. 被引量:2

二级参考文献46

  • 1高思莉,汤心溢.红外动态场景仿真[J].红外,2004,25(12):11-16. 被引量:6
  • 2李维雅,董能力,金钢,李正周.弱小目标检测算法性能评价的回归分析方法[J].光电工程,2005,32(2):41-44. 被引量:3
  • 3何峻,卢再奇,付强.一种基于Logistic回归模型的ATR算法性能评估方法[J].雷达科学与技术,2005,3(3):152-155. 被引量:5
  • 4熊艳,张桂林,彭嘉雄.自动目标识别算法性能评价的一种方法[J].自动化学报,1996,22(2):192-196. 被引量:11
  • 5B. Bir, L. J. Terry. Image Understanding Research for Automatic Target Recognition[J]. IEEE Aerospace and Electronic Systems Magazine, 1993, 8(10): 15-23.
  • 6B. Bhanu. Automatic Target Recognition: State of the Art Survey[J]. IEEE Trans. on Aerospace & Electronic Systems, 1986, 22(4): 364-379.
  • 7M. M. Hayat, S. N. Torres, E. Armstrong, et al. Statistical Algorithm for Non-uniformity Correction in Focal-plane Arrays[J]. Applied Optics, 1999, 38(5): 772-780.
  • 8S. N. Torres, M. M. Hayat, E. Armstrong, et al. A Kalman Filtering Approach for Non-uniformity Correction in Focal-plane Array Sensors[C]//SPIE, 2000, 4030: 196-205.
  • 9R. C. Hardie, M. Hayat, E. Armstrong, et al. Scene Based Non-uniformity Correction Using Video Sequences and Registration[J]. Applied Optics, 2000, 39: 1241-1250.
  • 10G. Howard. Thermal Background Modeling[C]//SPIE, 1988, 933: 132-140.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部