期刊文献+

IP over WDM网络中动态IP流量对非线性效应的影响 被引量:2

Influence of Dynamic IP Traffic on the Combined Nonlinear Effects in IP over WDM Networks
原文传递
导出
摘要 研究了IP over WDM网络中IP业务流量的突发性对底层光脉冲传输的影响。突发的IP业务流量使WDM网络中传输信号的信道数目服从泊松分布,在非线性薛定谔方程(NLSE)的基础上进行IP流量分析,通过数值计算,考查了IP业务流量对四波混频(FWM)和交叉相位调制(XPM)的综合影响,得到了不同输入光功率、不同流量负荷下的眼图。结果表明,40信道的WDM网络中,当输入信号光功率大于5 dBm时,IP流量负荷的改变将会对网络性能产生剧烈的影响。同时,通过公式计算出FWM功率、比特误码率与输入光功率、流量负荷、信道间隔的关系,突出强调了不同信道分布对探测信道FWM效应的不同影响。 The influence of IP bursty traffic on combined nonlinear effects of cross phase modulation(XPM) and four-wave mixing(FWM) in IP over WDM networks is investigated by analyzing the Poisson distributed IP traffic based on the nonlinear Schrdinger equation(NLSE).Taken combined nonlinear effects into account,at the receiver,different eye diagrams with different input light powers and different IP traffic loads are obtained.From the numerical calculation results,when the input light power per channel is bigger than 5 dBm with 40 channels of WDM networks,the effect of IP bursty traffic will distort eye diagrams drastically.Furthermore we figure out the FWM power with different IP traffic loads,different input light powers and frequency spacings.FWM power with different wavelength settings is especially emphasized.From the FWM power distribution,we could quantitatively analyze which channels cross the probe channel seriously through FWM effect.
出处 《中国激光》 EI CAS CSCD 北大核心 2010年第7期1777-1783,共7页 Chinese Journal of Lasers
基金 国家自然科学基金(60772013) 国家973计划(2010CB328300 2010CB328305)资助课题
关键词 IP over WDM网络 IP业务流量 四波混频噪声功率 交叉相位调制 眼图 IP over WDM networks IP traffic four-wave mixing noise power cross phase modulation eye diagrams
  • 相关文献

参考文献14

  • 1李蔚,李源,黄德修,刘德明.具有服务等级的光链路建立方法[J].通信学报,2006,27(12):14-19. 被引量:1
  • 2李兆玺,胡贵军,孔令杰.自适应调制的正交频分复用多模光纤通信系统性能分析[J].中国激光,2008,35(4):582-586. 被引量:16
  • 3R. Lo Cigno, E. Salvadoril, Z. Zs'oka. Elastic traffic effects on WDM dynamic grooming algorithms [C]. IEEE, Global Telecommunications Conference, 2004, 3 : 1963- 1967.
  • 4K. D. Dambul, F. M. Abbou, H. T. Chuah. Impact of SRS and XPM on the performance of IP traffic over a WDM ring network [J]. J. Opt. Commun. , 2007, 28(3):198-200.
  • 5Junhua Tang, Chee Kheong Slew, Liren Zhang. Optical nonlinear effects on the performance of IP traffic over GMPLS based DWDM networks [J]. Comput. Commun., 2003, 16 (12) :1330-1340.
  • 6Junhua Tang, Liren Zhang, Chee-Kheong Siew. The effect of IP traffic burstiness on four-wave mixing crosstalk in WDM networks [J]. Microw. Opt. Technol. Lett. , 2003, 37(3) 212-214.
  • 7Junhua Tang, Liren Zhang. Effect of IP traffic on optical QoS in DWDM networks [C]. IEEE International Conference on ICON, 2000. 370-374.
  • 8M. W. Maeda, W. B. Sessa, W. I. Wayet al.. The effect of four-wave mixing in fibers on optical frequency-division multiplexing systems [J]. J. Lightwave Technol., 1990, 8 (9):1402-1408.
  • 9K. Inoue. A simple expression for optical FDM network scale considering fiber four-wave mixing and optical amplifier noise [J]. J. Lightwave Technol., 1995, 13(5):856-861.
  • 10韩庆生,李蔚,梅君瑶,黄德修,孙俊.光纤通信系统中差分相位调制平衡接收机系统误码率的精确计算[J].光学学报,2009,29(11):2977-2983. 被引量:4

二级参考文献47

共引文献22

同被引文献18

  • 1Kim M S, Won Y J. Application-level traffic monitoring and an analysis on IP networks [J]. ETRI Journal, 2005, 27 ( 1 ) : 22-42.
  • 2Pablo D. Castro, Guilherme P. Coelho, Marcelo F Caeta- no, et al. Designing Ensembles of fuzzy classification sys- tems: an immune approach [ C]. In Proceedings of ICAR- IS. 2005 : 469-482.
  • 3Thuy T T, Grenville Armitage. A survey of techniques for internet traffic classification using machine learning [J]. IEEE Communications Surveys and Tutorials, 2008, 10 (4) :56-76.
  • 4Kuncheva L I, Whitaker C J. Measures of diversity in clas- sifier ensembles and their relationship with the ensemble ac- curacy [ J ]. Machine Learning 2003, 51 ( 2 ) : 181-207.
  • 5Moore A, Zuey D. lnternet traffic classification using bayesian analysis techniques [ C ]. Proceedings of the 2005 International Conference on Measurement and Modeling of Computer Systems. New York: ACM, 2005:50-60.
  • 6Madhukar A, Williamson C. A longitudinal study of P2P traffic classification[C]. Modeling, Analysis, and Simula- tion of Computer and Telecommunication System, MAS- COTS 2006, 14th IEEE International Symposium, IEEE, 2006, 179-188.
  • 7Moore A, Papagiannaki K. Toward the accurate identifica- tion of network applications [J]. Passive and Active Net- work Measurement, 2005, 41-54.
  • 8Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: muhilevel traffic classification in the dark [ C ]. ACM SIG- COMM Computer Communication Review, ACM, Philadel- phia, 2005, 35(4) : 229-240.
  • 9Kim H, Claffy K, Fomenkov M, et al. Internet traffic clas- sification demystified: Myths, caveats, and the best prac- tices[ C]. Proceedings of the 2008 ACM CoNEXT Confer- ence, ACM, 2008, 1-12.
  • 10Nguyen T, Armitage G. A survey of techniques tor lnternet traffic classification using machine learning [ J]. Communi- cations Surveys & Tutorials, IEEE, 2008, 10 (4) : 56-76.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部