期刊文献+

视频点播中用户交互式请求数分布的建模与分析 被引量:3

Modeling and Analyzing the Distribution of Number of User Interactive Requests in Video-on-Demand
下载PDF
导出
摘要 现有视频点播系统的用户行为建模研究仅从会话的角度考察视频交互式请求数分布模型.提出从视频对象的角度考察用户交互式请求数分布.观察到交互式请求数的分布表现出重尾现象;通过对实际用户访问数据的统计分析,证明常用幂律模型不适合刻画交互式请求数分布;提出采用广延指数模型对其建模.对不同时间区间内用户访问数据的分析表明,广延指数模型较好的描述了交互式请求数的分布,其形状参数描述了用户交互式请求的波动性,尺度参数则刻画了用户交互式请求的时效特性. Current study on modeling of user behavior in video on demand system only investigate the distribution of number of user interactive requests per session.The modeling and analysis of distribution of number of interactive requests per video were proposed.The distribution of number of interactive requests has been observed to appear to heavy tailed.Statistical analysis on a real workload showed that the common power law model may not be suitable to characterize the distribution.The stretched exponential model was proposed.Numerical studies on the real workload in different time scales indicated that the stretched exponential model well characterized the distribution of number of user interactive requests.The shape parameter of the stretched exponential model characterizes the volatility of user interactive requests and the scale parameter characterizes the aging effect of user interactive request.
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第7期1426-1432,共7页 Journal of Chinese Computer Systems
基金 国家科技支撑计划(2008BAH28B04)资助 安徽省高校省级自然科学基金项目(KJ2008A106)资助
关键词 交互式请求 用户行为模型 广延指数模型 重尾 时效特性 interactive request user behavior model stretched exponential model heavy tail aging effect
  • 相关文献

参考文献2

二级参考文献104

共引文献89

同被引文献22

  • 1蔡青松,李子木,胡建平.Internet上的流媒体特性及用户访问行为研究[J].北京航空航天大学学报,2005,31(1):25-30. 被引量:13
  • 2林光国,戴琼海,丁嵘.基于用户行为统计的流媒体集群负载均衡算法[J].清华大学学报(自然科学版),2005,45(4):525-528. 被引量:5
  • 3杨传栋,余镇危,王行刚,张焕远.基于流行度预测的流媒体代理缓存替换算法[J].计算机工程,2007,33(7):99-100. 被引量:23
  • 4Sen S, Rexford J, Towsley D. Proxy prefix caching for multimedia streams. Proceedings of IEEE INFOCOM, New York, NY, USA, 1999:1310-1319.
  • 5Qu w Y, Li K Q, Kitsuregawa M, et ol. An optimal solution for caching multimedia objects in transcoding proxies. Computer Communications, 2007, 30(8): 1802-1810.
  • 6Rejaie R, Handley M, Yu H B, et al. Proxy caching mechanism for multimedia playback streams in the Internet. Proceedings of the 4th International WWW Caching Workshop, San Diego, USA, 1999:1-11.
  • 7ChenS Q, Shen B, Wee S, et al. Adaptive and lazy segmentation based proxy caching for streaming media delivery. Proceedings of the 13th International Workshop on Network and Operating Systems Support for Digital Audio and Video Monterey, New York, NY, USA, 2003:22-31.
  • 8Wu K L, Yu P S, Wolf J L. Segment-based proxy caching of multimedia streams. Proceedings of the 10th International World Wide Web Conference, Hong Kong, China, 2001: 36--.
  • 9Yu J, Yang Z K, l)u X, et d. Two-point popularity-based caching 'algorithm for streaming media. Journal of Huazhong Universily of Science and Technology (Nature Science Edition), 2006, 34(10): 15-17.
  • 10Cherkasova L, Gupta M. Analysis of enterprise media server workloads: access patterns, locality, content evolution, and rates of change[J]. Networking, IEEE/ACM Transactions on, 2004, 12(5): 781-794.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部