期刊文献+

基于FitzHugh-Naguno神经元随机共振机制的图像复原 被引量:4

Image restoration based on stochastic resonance mechanism of FitzHugh-Nagumo neuron
下载PDF
导出
摘要 应用随机共振机制,借助噪声能量实现图像复原,改善低信噪比图像的输出质量.通过分析FitzHugh-Nagumo(FHN)神经元的阈上随机共振机理,以及在相平面上的阈值工作特性,对FHN神经元模型进行约简,以峰值信噪比(PSNR)为图像复原的评价函数,提出基于随机共振的自适应最优图像复原算法.以含噪mountain彩色图像和LED芯片图像为实验对象,与均值滤波、维纳滤波等图像复原算法进行仿真对比研究.结果表明:随机共振方法较好地抑制了噪声、恢复了图像细节和色彩信息,且随着噪声的增强,随机共振方法复原图像的峰值信噪比变化较小,该方法具有较好的鲁棒性. Based on stochastic resonance(SR) mechanism,the quality of lowsignal-noise-ratio image was improved by adding noise energy. According to analyzing suprathreshold stochastic resonance and thresh-old working characteristic of Fitzhugh-Nagumo(FHN) neuron model at phase space ,the model was simpli-fied.By choosing the peak signal-to-noise ratio(PSNR) as estimation function of the image restoration,a self-adaptive opti mized algorithm of image restoration processing based on RS mechanism was introduced.Anoisy mountain color image ,LED chip image and so on,were chosen as experimental objects ,to com-pare simulation result of image restoration with different algorithm,stochastic resonance restoration,meanfilter restoration and Wiener filter restoration. The results indicate that SR image restoration method isbetter in noise inversion,image detail restoration and color information restoration. Along with the in-creasing of noise intensity ,the peak signal-to-noise ratio of SR restoration images change less than others.This method has good robustness.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第6期1103-1107,共5页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60872090) 浙江省科技计划资助项目(2008C21108)
关键词 随机共振 FitzHugh-Nagumo神经元 图像复原 峰值信噪比 stochastic resonance Fitzhugh-Nagumo neuron image restoration peak signal-to-noise ratio
  • 相关文献

参考文献12

  • 1TAN S, YOUNG R C, BUDGETT D M, et al. Performance comparison of a linear parametric noise estimation Wiener filter and non-linear joint transform correlator for realistic clutter backgrounds[J]. Optics Communication, 2000, 182: 83-90.
  • 2DAUBECHIES I, TESCHKE G. Variational image restoration by means of wavelets: simultaneous decomposition, deblurring and denoising[J]. Applied and Computational Harmonic Analysis, 2005, 19(1) : 1 - 16.
  • 3尚晓清,王军锋,宋国乡.基于Bayesian估计和Wiener滤波的阈值去噪方法[J].光子学报,2003,32(7):889-891. 被引量:18
  • 4BENZI R, SUTERA A, VULPLANI A. The mechanism of stochastic resonance[J]. Journal of Physics A, 1981, 14(11): 453-457.
  • 5刘勇,鲍荣浩,段法兵.参数调节随机共振与信号处理的研究——在四进制基带PAM信号传输中的应用[J].浙江大学学报(工学版),2005,39(8):1260-1264. 被引量:4
  • 6杨祥龙,江波,吴为麟,童勤业.工程信号测量中的自适应随机共振应用[J].电路与系统学报,2003,8(2):104-107. 被引量:7
  • 7YE Qing-hua, HUANG Hai-ning, ZHANG Chun-hua. Image enhancement using stochastic resonance [C]//Proceedings of the 2004 International Conference on Image Processing (ICIP 2004). Singapore: IEEE, 2004: 263 -266.
  • 8SASAKI H, SAKANE S, ISHIDA T, et al. Subthreshold noise facilitates the detection and discrimination of visual signals[J]. Neuroscience Letters, 2008, 436 (2):255 -258.
  • 9MARKS R, THOMPSON H, EI-SHARKAWi M, et al. Stochastic resonance of a threshold detector: image visualization and explanation [C]// 2002 IEEE International Symposium on Circuits and Systems. Seattle: IEEE, 2002 : IV-521 - IV - 523.
  • 10HONGLER M, MENESES Y, BEYELEK A. The resonant retina:exploiting vibration noise to optimally detect edges in an image [J]. IEEE Transactions on Pattern Analysis and Machine Intelligent, 2003, 25 (9) : 1051 - 1062.

二级参考文献13

  • 1Crouse M S, Nowak R D, Baraniuk R G. Wavelet-based signal processing using hidden Markov models. IEEE Trans Signal Processing,1998,46(4) :886 -902.
  • 2Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage. J Amer Statist Assoc,1995,90(12) : 1200 - 1224.
  • 3Chambolle A, DeVore R A, Lee N, et al. Nonlinear wavelet image processing : Variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans Image Processing,1998,7(2) :319 -335.
  • 4Jansen M, Malfait M, Bultheel A. Generalized cross validation for wavelet thresholding. Signal Process, 1997 ,56(1) :33 -44.
  • 5Johni R L, Crump V J, Fisher T R. Image subband coding using arithmetic and trellis coded quantization. IEEE Trans CSVT, 1995,5(12) :515 -523.
  • 6Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Processing,2000,9(9) :1532 - 1546.
  • 7胡岗.随机力与非线性系统[M].上海:上海教育科技出版社,1995..
  • 8BENZI R, SUTERA A, VULPIANI A. The mechanism of stochastic resonance [J]. Journal of Physics A, 1981, 14(11): 453-457.
  • 9COIAANS J J, CHOW C C, IMHOFF T T. A period stochastic resonance in excitable systems [J]. Physical Review E, 1995, 52(4):1118- 1231.
  • 10DUAN F B, XU B H. Parameter-induced stochastic resonance and baseband binary PAM signal transmission over an AGWN channel[J]. International Journal of Bifurcation & Chaos, 2003, 13(2):411 - 425.

共引文献25

同被引文献23

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部