期刊文献+

Ultrafast spectroscopy of semiconductor saturable absorber mirror 被引量:1

Ultrafast spectroscopy of semiconductor saturable absorber mirror
原文传递
导出
摘要 Ultrafast spectroscopy of semiconductor saturable absorber mirror (SESAM) is measured using a femtosec- ond pump-probe experiment. This allows dynamic responses of SESAM in the cavity to be concluded by ultrafast spectroscopy. Change in reflection is measured as a function of pump-probe delay for different pump excitation fluences. Change of nonlinear reflection of SESAM is measured as a function of incident light energy density. When the excitation fluence increases, nonlinear change in ultrafast spectroscopy of SESAM becomes increasingly significant. When SESAM is pumped by an ultrahigh excitation fluence, the energy density of which is approximately 1400 μJ/cm2, two-photon absorption can be observed visibly in its ultrafast spectroscopy. Ultrafast spectroscopy of semiconductor saturable absorber mirror (SESAM) is measured using a femtosec- ond pump-probe experiment. This allows dynamic responses of SESAM in the cavity to be concluded by ultrafast spectroscopy. Change in reflection is measured as a function of pump-probe delay for different pump excitation fluences. Change of nonlinear reflection of SESAM is measured as a function of incident light energy density. When the excitation fluence increases, nonlinear change in ultrafast spectroscopy of SESAM becomes increasingly significant. When SESAM is pumped by an ultrahigh excitation fluence, the energy density of which is approximately 1400 μJ/cm2, two-photon absorption can be observed visibly in its ultrafast spectroscopy.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2010年第7期676-679,共4页 中国光学快报(英文版)
基金 supported by the Ministry of Science,Research,and the Arts of Baden-Wrttemberg State of Germany and the Chinese Scholarship Council
关键词 Dynamic response Light reflection Mirrors Probes PUMPS Two photon processes Dynamic response Light reflection Mirrors Probes Pumps Two photon processes
  • 相关文献

参考文献12

  • 1U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, Opt. Lett. 17, 505 (1992).
  • 2U. Keller, Nature 424, 831 (2003).
  • 3L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, Phys. Rev. Lett. 80,185 (1998).
  • 4K. Herz, G. Bacher, A. Forchel, H. Strsub, G. Brunthaler, W. Faschinger, G. Bauer, and C. Vieu, Phys. Rev. B 59, 2888 (1999).
  • 5H. J. Zeiger, J. Vidal, T. K. Cheng, E. P. Ippen, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 45, 768 (1992).
  • 6M. Joschko, P. Langlois, E. R. Thoen, E. M. Koontz, E. P. Ippen, and L. A. Kolodziejski, Appl. Phys. Lett. 76, 1383 (2000).
  • 7E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. K~rtner, E. P. Ippen, and L. A. Kolodziejski, Appl. Phys. Lett. 74, 3927 (1999).
  • 8P. Langlois, M. Joschko, E. R. Thoen, E. M. Koontz, F. X. Kartner, E. P. Ippen, and L. A. Kolodziejski, Appl. Phys. Lett. 75, 3841 (1999).
  • 9J. Mork, J. Mark, and C. P. Seltzer, Appl. Phys. Lett. 64, 2206 (1994).
  • 10D. H. Sutter, I. D. Jung, F. X. Kartner, N. Matuschek, F. Morier-Genoud, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4,169 (1998).

同被引文献2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部