期刊文献+

Measurement of third-order nonlinear optical susceptibility of synthetic diamonds

Measurement of third-order nonlinear optical susceptibility of synthetic diamonds
原文传递
导出
摘要 Diamonds are wide-gap semiconductors possessing excellent physical and chemical properties; thus, they are regarded as very appropriate materials for optoelectronic devices. Based on the Kerr effect, we introduce a simple and feasible method for measuring the third-order nonlinear optical susceptibility of synthetic diamonds. In the experiments, synthetic type I diamond samples and transverse electro-optic modulation systems are utilized. As for the laser with the wavelength of 650 nm, the third-order susceptibility and Kerr coefficient of the diamond samples are obtained at X1212(3) = 2.17 × 10^-23 m2/V2 and S44 = 1.93 ×12^-23 m2/V2, respectively. Diamonds are wide-gap semiconductors possessing excellent physical and chemical properties; thus, they are regarded as very appropriate materials for optoelectronic devices. Based on the Kerr effect, we introduce a simple and feasible method for measuring the third-order nonlinear optical susceptibility of synthetic diamonds. In the experiments, synthetic type I diamond samples and transverse electro-optic modulation systems are utilized. As for the laser with the wavelength of 650 nm, the third-order susceptibility and Kerr coefficient of the diamond samples are obtained at X1212(3) = 2.17 × 10^-23 m2/V2 and S44 = 1.93 ×12^-23 m2/V2, respectively.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2010年第7期685-688,共4页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China (Nos. 60976043 and 60976037) the Collaborative Projects of NSFC-RFBR Agreement (Nos. 60711120182 and 60811120023) the National "863" Program of China (No. 2009AA03Z419)
关键词 Chemical properties Diamonds Kerr magnetooptical effect Magnetic field effects Nonlinear optics Optoelectronic devices Synthetic diamonds Chemical properties Diamonds Kerr magnetooptical effect Magnetic field effects Nonlinear optics Optoelectronic devices Synthetic diamonds
  • 相关文献

参考文献17

  • 1S. Almaviva, M. Marinelli, E. Milani, G. Prestopino, A. Tucciarone, C. Verona, G. Verona-Rinati, M. Angelone, and M. Pillon, Diamond Relat. Mater. 18, 101 (2009).
  • 2Z.-C. Dong, A. S. Trifonov, N. V. Suetin, and P. V. Minakov, Surface Science 549, 203 (2004).
  • 3S. M. Baker, G. R. Rossman, and J. D. Baldeschwieler, J. Appl. Phys. 74, 4015 (1993).
  • 4M. I. Eremets, Semieond. Sci. Technol. 6, 439 (1991).
  • 5P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntingtor, J. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, Advanced Materials 17, 2427 (2005).
  • 6Y. Koide, M.Y. Liao, and M. Imura, Diamond Relat. Mater. 19, 205 (2010).
  • 7E. Berdermann, K. Blasche, P. Moritz, H. Stelzer, and B. Voss, Diamond Relat. Mater. 10, 1770 (2001).
  • 8Y. Koide, M. Y. Liao, J. Alvarez, M. Imura, K. Sueishi, and F. Yoshifusa, Nano-Micro Lett. 1, 30 (2009).
  • 9E. Anastassakis and E. Burstein, J. Opt. Soc. Am. 61, 1618 (1971).
  • 10K. Arya and S. S. Jha, Phys. Rev. B 20, 1611 (1979). 11.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部