摘要
Diamonds are wide-gap semiconductors possessing excellent physical and chemical properties; thus, they are regarded as very appropriate materials for optoelectronic devices. Based on the Kerr effect, we introduce a simple and feasible method for measuring the third-order nonlinear optical susceptibility of synthetic diamonds. In the experiments, synthetic type I diamond samples and transverse electro-optic modulation systems are utilized. As for the laser with the wavelength of 650 nm, the third-order susceptibility and Kerr coefficient of the diamond samples are obtained at X1212(3) = 2.17 × 10^-23 m2/V2 and S44 = 1.93 ×12^-23 m2/V2, respectively.
Diamonds are wide-gap semiconductors possessing excellent physical and chemical properties; thus, they are regarded as very appropriate materials for optoelectronic devices. Based on the Kerr effect, we introduce a simple and feasible method for measuring the third-order nonlinear optical susceptibility of synthetic diamonds. In the experiments, synthetic type I diamond samples and transverse electro-optic modulation systems are utilized. As for the laser with the wavelength of 650 nm, the third-order susceptibility and Kerr coefficient of the diamond samples are obtained at X1212(3) = 2.17 × 10^-23 m2/V2 and S44 = 1.93 ×12^-23 m2/V2, respectively.
基金
supported by the National Natural Science Foundation of China (Nos. 60976043 and 60976037)
the Collaborative Projects of NSFC-RFBR Agreement (Nos. 60711120182 and 60811120023)
the National "863" Program of China (No. 2009AA03Z419)