期刊文献+

贝叶斯决策分析在医学步态分析中运动目标检测的应用研究

Research on Application of Bayes Decision Ruler in Moving Object Detection of Medical Gait Analysis
下载PDF
导出
摘要 针对医学步态分析中的运动目标检测问题,提出基于最小错误率的贝叶斯决策规则的方法。该方法由变化检测、变化分类、前景目标提取和背景更新四部分组成。变化检测采用自适应阈值法来二值化变化点和非变化点,变化分类基于颜色共生特征向量,采用贝叶斯规则进行决策,前景对象的提取融合了时间差分法和减背景法。针对复杂场景中背景的"渐变"和"突变"情况,提出不同的背景更新策略。实验表明,该方法和包含有摇动的树枝或者灯的开关等复杂背景中能准确地提取运动目标,因此可用在医学步态分析的研究中。 This paper proposes a novel method for moving object detection from a video in medical gait analysis. It consist of four parts: change detection, change classification, foreground object abstraction, and background learning and maintenance. We use the Bayes decision rule for classification of background and foreground changes based on a special feature vector color co-occurrence feature. Foreground object abstraction fuse the classification results from both stationary and moving pixels. Learning strategies for the gradual and "once-off" background changes are proposed to adapt to various changes in background through the video. Extensive experiments on detecting foreground objects from a video containing wavering tree branches, or light open/close demonstrate that the proposed method is effective and can be used in medical gait analysis
出处 《中国数字医学》 2010年第7期64-66,72,共4页 China Digital Medicine
基金 吉林省科技重点项目(编号:20070323)~~
关键词 最小错误率 贝叶斯决策规则 医学步态分析 目标检测 minimum error ratio, the Bayes decision rule, medical gait analysis, object detection
  • 相关文献

参考文献7

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2LIPTON A,FUJIYOSHI H,PATIL R.Moving target classification and tracking from real-time video.In proceedings IEEE Workshop on Application of computer Vision.IEEE Computer Society,1998:8-14.
  • 3STSUFFER C,GRIMSON W.Adaptive background mixture models for real tracking.ln Proceeding of IEEE International Conference on Computer Recognitiong,1999,2:246-252.
  • 4TOYAMA K,KRUMM J,BRUMITT B,et al.Wallflower:principles and practice of background maintenance.In Proceedings of IEEE int,1999:255-261.
  • 5LIPTON A,FUJIYOSHI H,PATIL R.Moving target classification and tracking from real-time video.ln proceedings IEEE Workshop on Application of computer Vision.IEEE Computer Society,1998:8-14.
  • 6ROSIN P.Thresholding for change detectision,ion.In Proceedings of IEEE Int'l Conf.on computer,1998:274-279.
  • 7http://imagelab.ing.unimo.it/vssn06/.[2006-08-10].

二级参考文献47

  • 1Kilger M.A shadow handler in a video-based real-time traffic monitoring system[A].In:Proceedings of IEEE Workshop on Applications of Computer Vision[C],Palm Springs,CA,USA,1992:1060 ~ 1066.
  • 2Elgammal A.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of IEEE,2002,90 (7):1151 ~ 1163.
  • 3Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach[A].In:Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence[C],Rhode Island,USA,1997:175 ~ 181.
  • 4Grimson W,Stauffer C,Romano R.Using adaptive tracking to classify and monitor activities in a site[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Santa Barbara,CA,USA,1998:22 ~29.
  • 5Stauffer C,Grimson W.Adaptive background mixture models for realtime tracking[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,USA,1999,2:246~252.
  • 6Gao X,Boult T,Coetzee F,et al.Error analysis of background adaption[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Isand,SC,USA,2000:503 ~510.
  • 7Power P W,Schoonees J A.Understanding background mixture models for foreground segmentation[A].In:Proceedings of Image and Vision Computing[C],Auckland,New Zealand,2002:267 ~271.
  • 8Lee D S,Hull J,Erol B.A Bayesian framework for gaussian mixture background modeling[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,Spain,2003:973 ~ 976.
  • 9Rittscher J,Kato J,Joga S,et al.A probabilistic background model for tracking[A].In:Proceedings of European Conference on Computer Vision[C],Dublin,Ireland,2000,2:336 ~ 350.
  • 10Stenger B,Ramesh V,Paragios N,et al.Topology free hidden markov models:Application to background modeling[A].In:Proceedings of IEEE International Conference on Computer Vision[C],Vancouver,BC,Canada,2001,1:294 ~301.

共引文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部