期刊文献+

基于随机背包的公钥密码 被引量:8

Public Key Cryptosystem Using Random Knapsacks
下载PDF
导出
摘要 该文构造了一个背包型公钥密码算法。该背包公钥密码具有如下优点:加解密只需要加法和模减法运算,因此加解密速度快;该算法是基于随机背包问题而不是易解背包问题而构造的;证明了在攻击者不掌握私钥信息情况下该密码算法能抵抗直接求解背包问题的攻击,包括低密度攻击和联立丢番图逼近攻击等;证明了攻击者能够恢复私钥信息与攻击者能够分解一个大整数是等价的。分析表明,该算法是一个安全高效的公钥加密算法。 A knapsack-type public key cryptosystem is proposed.The proposed knapsack cryptosystem has the following advantages.The encryption and decryption only need addition and modular minus operations,so the encryption and decryption speed is high;The cryptosystem is constructed based on random knapsacks but not easy-to-solve knapsack problems;It is proven that if the secret key is not possessed by the attacker,the proposed cryptosystem can withstand the attacks launched by directly solving the underlying knapsack problem,including low-density attack and simultaneous Diophantine approximation attack;It is proven that the attacker can recover the secret keys if and only if he can factor a large integer.Analysis shows that the proposal is an efficient and secure public key encryption algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第7期1580-1584,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60803149 60903200) 国家973计划项目(2007CB311201) 111计划(B08038) 浙江省自然科学基金(Y1091085) 河南省基础与前沿技术研究项目(092300410159)资助课题
关键词 公钥密码 随机背包 密钥恢复攻击 安全性 Public key cryptography Random knapsack Key-recovery attack Security
  • 相关文献

参考文献15

  • 1姜正涛,张京良,王育民.一种新的等价于大整数分解的公钥密码体制研究[J].电子与信息学报,2008,30(6):1450-1452. 被引量:1
  • 2杨军,周贤伟.基于离散对数问题的两层分散式组密钥管理方案[J].电子与信息学报,2008,30(6):1457-1461. 被引量:4
  • 3Merkle R C and Hellman M E. Hiding information and signatures in trapdoor knapsacks[J]. IEEE Transactions on Information Theory, 1978, 24(5): 525-530.
  • 4杨健,杜增吉,乔军.基于Rabin算法的超递增背包公钥密码体制的研究与改进[J].数学的实践与认识,2009,39(12):109-114. 被引量:2
  • 5张卫东,王保仓,胡予濮.一种新的背包型公钥密码算法[J].西安电子科技大学学报,2009,36(3):506-511. 被引量:7
  • 6Murakami Y and Nasako T. A new trapdoor in knapsack public-key cryptosystem with two sequences as the public key[C]. The Third International Conference on Convergence and Hybrid Information Technology-ICCIT 2008, Busan, Korea 2008: 357-362.
  • 7Su P and Tsai C. New cryptosystems design based on hybrid-mode problems[J]. Computers and Electrical Engineering, 2009, 35(3): 478-484.
  • 8Hwang M, Lee C, and Tzeng S. A new knapsack public-key cryptosystem based on permutation combination algorithm[J]. International Journal of Applied Mathematics and Computer Sciences, 2009, 5(1): 33-38.
  • 9Coster M J, Joux A, and LaMacehia B A, et al.. Improved low-density subset sum algorithms[J]. Computational Complexity, 1992, 2(2): 111-128.
  • 10Lagarias J C. Knapsack public key cryptosystems and Diophantine approximation[C]. Advances in Cryptology- CRYPTO 1983, New York: Plenum, 1984: 3-23.

二级参考文献35

共引文献9

同被引文献84

  • 1汤鹏志,左黎明,李黎青.一种基于多背包的密码算法[J].微计算机信息,2006,22(08X):52-54. 被引量:1
  • 2王保仓,胡予濮.高密度背包型公钥密码体制的设计[J].电子与信息学报,2006,28(12):2390-2393. 被引量:13
  • 3何敬民 卢开澄.背包公钥系统的安全性与设计[J].清华大学学报:自然科学版,1988,28(1).
  • 4孟广武,张晓岚.高等数学[M].上海:同济大学出版社,2006:7-9.
  • 5MERKLE R C,HELLMAN M H.Hiding information and signatures in trapdoor knapsacks[J].IEEE Transactions on Information Theory,1978,24(5):525-530.
  • 6COSTER M J,JOUX A,LAMACCHIA B A,et al.Improved lowdensity subset sum algorithms[J]. Computational Complexity,1992,2(2):111-128.
  • 7ODLYZKO A M.The rise and fall of knapsack cryptosysterns[EB/OL].[2010-05-10].http://www.dtc.umn.edu/~ odlyzko/doc/arch/knapsack.survey.pdf.
  • 8LAI M K.Knapsack Cryptosystems:The Past and the Future[EB/OL].[2011-09-15].http://www.ics.uci.edu/~ mingl/knapsack.html.
  • 9LENSTRA A K,LENSTRA H W,Jr,LOVASZ L.Factoring polynomials with rational coefficients[J]. Mathematische Annalen,1982,261 (4):513-534.
  • 10SHANNON C E.Communication theory of secrecy systems[J].Bell System Technical Journal,1949,28(4):656-715.

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部