期刊文献+

基于合作博弈的运输分配方法 被引量:16

Allocation method of transportation based on cooperative game
原文传递
导出
摘要 通过计算按照合作博弈规则划分的运输网络的夏普里值,提出了新型的运输分配方法.对物资进行科学分配的同时,综合考虑了运输资源的合理利用和成本最优,便于利益相关者形成稳定的合作同盟.基于合作博弈的运输分配方法超越了单纯追求费用最小或时间最短的传统原则,从管理角度合理利用各方资源,优化运输成本,同时达到稳定和均衡. By calculating the Shapley value of the transport network in accordance with the rules of cooperative game, a new type of transport allocation method has been proposed, while ensuring the rational use of transport resources, optimizing the cost, enabling stake-holders to cooperate to form a stable alliance. The transportation allocation method, beyond the simple pursuit of traditional principles of smallest cost or shortest time, makes rational use of all transportation resources and optimizes the cost, from a management point of view, to achieve stability and balance at the same time.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2010年第7期1340-1344,共5页 Systems Engineering-Theory & Practice
关键词 运输问题 夏普里值 合作博弈 物流网络 shapley value cooperative game logistics network
  • 相关文献

参考文献9

  • 1Hitchcock F L. Distribution of a product from several sources to numerous localities[J]. Journal of Mathematical Physics, 1941, 20: 224-230.
  • 2Kantorovich L V. On the translocation of masses[J]. Dokl Akad Nauk SSSR, 1942, 37: 227-229.
  • 3《运筹学》教材编写组.运筹学[M].2版.北京:清华大学出版社,1990.
  • 4Bukchin J, Rubinovitz J. A weighted approach for assembly line design with station paralleling and equipment selection[J]. IIE Transactions, 2002, 35: 73-85.
  • 5Kelley J E. Critical path planning and scheduling-mathematical basis[J]. Operations Research, 1961, 9: 296-320.
  • 6Bomberger E. A dynamic programming approach to a lot size scheduling problem[J]. Management Science, 1966, 12(11): 778-784.
  • 7Elmaghraby S. The economic lot scheduling problem (ELSP): Review and extensions[J]. Management Science, 1978, 24(6): 587-598.
  • 8Wild Jr B, Karwan K R, Karwan M H. The multiple bottleneck transportation problem[J]. Computers Ops Res, 1993, 20(3): 261 -274.
  • 9Shapley L S. A value for n-person games[J]. Annals of Mathematical Studies, 1953, 28: 307-317.

同被引文献161

引证文献16

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部